Learn More
There is growing evidence that alterations in metabolism may contribute to tumorigenesis. Here, we report on members of families with the Li-Fraumeni syndrome who carry germline mutations in TP53, the gene encoding the tumor-suppressor protein p53. As compared with family members who are not carriers and with healthy volunteers, family members with these(More)
The genetic basis of increased glycolytic activity observed in cancer cells is likely to be the result of complex interactions of multiple regulatory pathways. Here we review the recent evidence of a simple genetic mechanism by which tumor suppressor p53 regulates mitochondrial respiration with secondary changes in glycolysis that are reminiscent of the(More)
Oxygen is not only required for oxidative phosphorylation but also serves as the essential substrate for the formation of reactive oxygen species (ROS), which is implicated in ageing and tumorigenesis. Although the mitochondrion is known for its bioenergetic function, the symbiotic theory originally proposed that it provided protection against the toxicity(More)
Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50%(More)
RATIONALE Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise(More)
p53 regulates the cell cycle and deoxyribonucleic acid (DNA) repair pathways as part of its unequivocally important function to maintain genomic stability. Intriguingly, recent studies show that p53 can also transactivate genes involved in coordinating the two major pathways of energy generation to promote aerobic metabolism, but how this serves to maintain(More)
Cancer cells often display defects in mitochondrial respiration, thus the identification of pathways that promote cell survival under this metabolic state may have therapeutic implications. Here, we report that the targeted ablation of mitochondrial respiration markedly increases expression of Polo-like kinase 2 (PLK2) and that it is required for the in(More)
An accurate and reliable high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed and validated for determination of sinomenine (SI), paeoniflorin (PF) and paeonol (PA), which was further applied to assess the pharmacokinetics of SI, PF and PA in an anti-arthritic herbal product, Qingfu Guanjieshu (QFGJS) capsule, in rats.(More)
Two new illudane sesquiterpenes, paneolic acid and paneolilludinic acid, along with a known antibiotic diterpene, pleuromutilin, were isolated from the mycelial solid cultures of Panaeolus retirugis. Their structures were elucidated on the basis of spectroscopic analysis. Both compounds exhibited antibacterial activity against Staphylococcus aureus, and(More)
We previously reported that Polo-like kinase 2 (PLK2) is highly expressed in cells with defective mitochondrial respiration and is essential for their survival. Although PLK2 has been widely studied as a cell cycle regulator, we have uncovered an antioxidant function for this kinase that activates the GSK3-NRF2 signaling pathway. Here, we report that the(More)