Wenyuan C Yin

Learn More
RATIONALE Positive modulators of the benzodiazepine/GABA(A) receptor complex can heighten aggressive behavior; the GABA(A)/alpha(1) subunit may play a critical role in benzodiazepine-modulated aggressive behavior. OBJECTIVE The carboline derivatives, beta-CCt and 3-PBC, antagonists with preferential action at the GABA(A) receptors with alpha(1) subunits,(More)
Recent research using genetically modified mice has pointed to the specific contribution of individual receptor subtypes to the various effects of benzodiazepines. The aim of this study was to examine the relative significance of alpha(1)-containing GABA(A) receptors in the effects of modulators at the benzodiazepine site in the elevated plus-maze (EPM)(More)
The positive modulation of gamma-aminobutyric acid type-A (GABAA) receptors is a putative mechanism via which alcohol escalates aggressive behavior. Broad-spectrum benzodiazepine antagonists block alcohol-heightened aggression in rats and monkeys. However, the degree to which GABAA subunit composition plays a role in heightened aggressive behavior induced(More)
The present study tested the hypothesis that GABA(A) and opioid receptors within the central nucleus of the amygdala (CeA) regulate ethanol (EtOH), but not sucrose-maintained responding. To accomplish this, betaCCt, a mixed benzodiazepine (BDZ) agonist-antagonist with binding selectivity at the alpha1 subunit-containing GABA(A) receptor, and the(More)
Recent research on genetically modified mice has attributed the amnesic effect of benzodiazepines mainly to the alpha1-containing GABA(A) receptor subtypes. The pharmacological approach, using subtype selective ligands, is needed to complement genetic studies. We tested the effects of the non-selective antagonist flumazenil (0-20.0 mg/kg), the preferential(More)
Ethanol's ability to enhance GABA neurotransmission via GABA(A) receptors has been implicated as an important mechanism underlying its discriminative stimulus (DS) effects in animals and subjective effects in humans. The present study assessed the contribution of alpha(1)GABA(A) and alpha(5)GABA(A) receptors to the DS effects of ethanol. Squirrel were(More)
It has been hypothesized that alcohol addiction is mediated, at least in part, by specific gamma-aminobutyric acid(A) (GABA(A)) receptors within the ventral pallidum (VP). Among the potential GABA(A) receptor isoforms regulating alcohol-seeking behaviors within the VP, the GABA(A) alpha1 receptor subtype (GABA(A1)) appears pre-eminent. In the present study,(More)
A series of 3,6-disubstituted β-carbolines was synthesized and evaluated for their in vitro affinities at α(x)β(3)γ(2) GABA(A)/benzodiazepine receptor subtypes by radioligand binding assays in search of α(1) subtype selective ligands to treat alcohol abuse. Analogues of β-carboline-3-carboxylate-t-butyl ester (βCCt, 1) were synthesized via a CDI-mediated(More)
RATIONALE The discriminative stimulus effects of zolpidem in squirrel monkeys trained at doses greater than or equal to 3.0 mg/kg differ from those of conventional benzodiazepines (BZs), but the extent to which these effects reflect the selectivity of zolpidem for GABA(A)/alpha(1) receptors is not known. OBJECTIVES The present study investigated the(More)
RATIONALE Conventional benzodiazepines (BZs), clinically used for treatment of anxiety and insomnia, bind to GABA(A) receptors containing alpha(1), alpha(2), alpha(3), or alpha(5) subunits. The role of these different GABA(A) receptor subtypes in mediating the subjective effects of BZs remains largely unknown. OBJECTIVE The purpose of the present study(More)