Wenying Quan

Learn More
Autophagy is a catabolic cellular process involving the degradation of the cell's own components. Although the role of autophagy of diverse tissues in body metabolism has been investigated, the importance of autophagy in hypothalamic proopiomelanocortin (POMC) neurons, key regulators of energy balance, has not been addressed. The role of autophagy in leptin(More)
The unfolded protein response (UPR) in endoplasmic reticulum (ER) and autophagy are known to be related. We investigated the role of autophagy in UPR of pancreatic beta cells and the susceptibility of autophagy-deficient beta cells to the ER stress that is implicated in the development of diabetes. Rat insulin promoter (RIP)-Cre +;autophagy-related 7(More)
Islet amyloid accumulation is a hallmark of human type 2 diabetes (T2D). In contrast to human islet amyloid polypeptide (hIAPP), murine islet amyloid polypeptide (mIAPP) does not exhibit amyloidogenic propensity. Because autophagy is important in the clearance of amyloid-like proteins, we studied transgenic mice with β cell-specific expression of hIAPP to(More)
The mechanism of FFA-induced insulin resistance is not fully understood. We have searched for effector molecules(s) in FFA-induced insulin resistance. Palmitic acid (PA) but not oleic acid (OA) induced insulin resistance in L6 myotubes through C-Jun N-terminal kinase (JNK) and insulin receptor substrate 1 (IRS-1) Ser307 phosphorylation. Inhibitors of(More)
Despite growing interest in the relationship between autophagy and systemic metabolism, how global changes in autophagy affect metabolism remains unclear. Here we show that mice with global haploinsufficiency of an essential autophagy gene (Atg7(+/-) mice) do not show metabolic abnormalities but develop diabetes when crossed with ob/ob mice. Atg7(+/-)-ob/ob(More)
Autophagy plays a crucial role in cellular homeostasis through the degradation and recycling of organelles such as mitochondria or endoplasmic reticulum (ER) that are closely related to the pathogenesis of diabetes. In pancreatic β-cells producing insulin, autophagy helps maintain β-cell mass, structure and function. In mice with β-cell-specific deletion of(More)
Type 2 diabetes mellitus is characterized by insulin resistance and failure of pancreatic β-cells producing insulin. Autophagy plays a crucial role in cellular homeostasis through degradation and recycling of organelles such as mitochondria or endoplasmic reticulum (ER). Here we discussed the role of β-cell autophagy in development of diabetes, based on our(More)
Autophagy plays a crucial role in the maintenance of cellular nutrient balance and the function of organelles such as mitochondria or the endoplasmic reticulum, which are important in intracellular metabolism, insulin release, and insulin sensitivity. In the insulin-producing pancreatic β-cells, autophagy is important in the maintenance of β-cell mass,(More)
Autophagy, which is critical for the proper turnover of organelles such as endoplasmic reticulum and mitochondria, affects diverse aspects of metabolism, and its dysregulation has been incriminated in various metabolic disorders. However, the role of autophagy of myeloid cells in adipose tissue inflammation and type 2 diabetes has not been addressed. We(More)
Autophagy is a catabolic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to lysosomes, where the sequestered material is degraded and recycled. Autophagy is important for maintenance of intracellular energy homeostasis and the quality control of organelles such as the endoplasmic reticulum (ER)(More)