Wenxing Hong

Learn More
—In this paper, we first provide a comprehensive investigation of four online job recommender systems (JRSs) from four different aspects: user profiling, recommendation strategies, recommendation output, and user feedback. In particular, we summarize the pros and cons of these online JRSs and highlight their differences. We then discuss the challenges in(More)
In some E-commerce recommender systems, a special class of recommendation involves recommending items to users in a life cycle. For example, customers who have babies will shop on Amazon within a relatively long period, and purchase different products for babies within different growth stages. Traditional recommendation algorithms cannot effectively resolve(More)
Recommending online news articles has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world. Many online readers have their own reading preference on news articles; however, a group of users might be interested in similar fascinating topics. It would be helpful to take into(More)
Online recruiting systems have gained immense attention in the wake of more and more job seekers searching jobs and enterprises finding candidates on the Internet. A critical problem in a recruiting system is how to maximally satisfy the desires of both job seekers and enterprises with reasonable recommendations or search results. In this paper, we(More)
1 — In this paper, the expansion of feature points of the linear scale space is transformed into the classification of multi-scale data set within the same scale, which belongs to the classification of scale invariant non-equilibrium .The paper presents a sample approach based on kernel learning to solve classification on imbalance dataset by Support Vector(More)
  • 1