Wenxing Chen

Learn More
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd induces neuronal apoptosis in part through activation of the mammalian target of rapamycin (mTOR) pathway. However, the underlying mechanism is unknown. Here we show that Cd induces the generation of reactive oxygen species (ROS)(More)
Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we(More)
Oxidative stress results in apoptosis of neuronal cells, leading to neurodegenerative disorders. However, the underlying molecular mechanism remains to be elucidated. Here, we show that hydrogen peroxide (H(2)O(2)), a major oxidant generated when oxidative stress occurs, induced apoptosis of neuronal cells (PC12 cells and primary murine neurons), by(More)
BACKGROUND Migration and invasion are two crucial steps of tumor metastasis. Blockage of these steps may be an effective strategy to reduce the risk. The objective of the present study was to investigate the effects of diallyl trisulfide (DATS), a natural organosulfuric compound with most sulfur atoms found in garlic, on migration and invasion in triple(More)
It was to assess antiangiogenic effect of β-elemene in vitro and in vivo, and it was involved in inhibiting melanoma growth and metastasis, as well as to elucidate its intrinsic mechanism. Inhibitive effect of β-elemene on B16F10 cells was performed by cell proliferation assay. Angiogenesis assays in vitro including rat aortic ring and chick embryo(More)
Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, the underlying mechanism is not well understood. Here, we show that CPT induced caspase-independent cell death in human tumor cells (Rh30, DU145, and MCF-7). Besides downregulating antiapoptotic protein expression of(More)
Ciclopirox olamine (CPX) is a synthetic antifungal agent clinically used to treat mycoses of the skin and nails. Here, we show that CPX inhibited tumor growth in human breast cancer MDA-MB-231 xenografts. To unveil the underlying mechanism, we further studied the antitumor activity of CPX in cell culture. The results indicate that CPX inhibited cell(More)
Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, little is known about its anticancer mechanism. Here, we show that CPT inhibited cancer cell proliferation by arresting cells in G(1)-G(0) phase of the cell cycle. This is associated with the inhibition of cyclin D1(More)
Curcumin can induce p53-independent apoptosis. However, the underlying mechanism remains to be defined. Here, we show that curcumin-induced apoptosis in a panel of tumor cells with mutant p53. Curcumin rapidly induced activation of the mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2 (Erk1/2) and c-Jun N-terminal(More)
Holothurian glycosaminoglycan (hGAG) is a high-molecular-weight form of fucosylated chondroitin sulfate and has an antithrombotic effect. Our previous studies demonstrated that hGAG efficiently inhibited tumor cell metastasis. The interplays between thrombosis and tumor progression may have a major impact on hematogenous metastasis. In this study, we(More)