Learn More
PURPOSE Microglia and Müller cells are prominent participants in retinal responses to injury and disease that shape eventual tissue adaptation or damage. This investigation examined how microglia and Müller cells interact with each other following initial microglial activation. METHODS Mouse Müller cells were cultured alone, or co-cultured with activated(More)
PURPOSE Microglia in the central nervous system display a marked structural dynamism in their processes in the resting state. This dynamic behavior, which may play a constitutive surveying role in the uninjured neural parenchyma, is also highly responsive to tissue injury. The role of CX3CR1, a chemokine receptor expressed in microglia, in regulating(More)
Guiding non-neural, retinal pigment epithelium (RPE) to produce retinal neurons may offer a source of developing neurons for cell-replacement. Sox2 plays important roles in maintaining neural progenitor/stem cell properties and in converting fibroblasts into pluripotent stem cells. This study tests the possibility of using Sox2 to reprogram RPE to(More)
Age-related macular degeneration is an outer retinal disease that involves aging and immune dysfunction. In the aging retina, microglia aggregate in the outer retina and acquire intracellular autofluorescent lipofuscin deposits. In this study, we investigated whether accumulation of A2E, a key bisretinoid constituent of ocular lipofuscin, alters the(More)
The various cell types in the vertebrate retina arise from a pool of common progenitors. The way that the cell types are specified has been a long-standing issue. Decades of research have yielded a large body of information regarding the involvement of extrinsic factors, and only recently has the function of intrinsic factors begun to emerge. This article(More)
The molecular mechanism of retinal ganglion cell (RGC) genesis and development is not well understood. Published data suggest that the process may involve two bHLH genes, ath5 and NSCL1. Gain-of-function studies show that ath5 increases RGC production in the developing retina. We examined whether two chick genes, cath5 and cNSCL1, can guide retinal pigment(More)
The molecular mechanism underlying vertebrate retinal development is not well understood. To examine whether neurogenin2 (ngn2) expression determines cell fate in the retina, we mapped the final fates of cells that once expressed ngn2, using the conditional, binary CreER -LacZ system. We found LacZ+ cells in all 3 nuclear layers of the mouse retina and(More)
Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking.(More)
IMPORTANCE OF THE FIELD Retinal degenerations cause blindness. One potential therapy is cell replacement. Because the human retina lacks regeneration capacity, much attention has been directed towards searching for cells that can differentiate into retinal neurons. AREAS COVERED IN THIS REVIEW We discuss the possibility of using transcription factor genes(More)