Wenxin Luo

Learn More
BACKGROUND We have raised a panel of broad spectrum neutralizing monoclonal antibodies against the highly pathogenic H5N1 avian influenza virus, which neutralize the infectivity of, and afford protection against infection by, most of the major genetic groups of the virus evolved since 1997. Peptide mimics reactive with one of these broad spectrum H5N1(More)
Due to the great diversity in protein expression productivity, a customized transient gene expression (TGE) method was used in the present study to optimize transient expression of three antibodies. Several factors, including host cells, temperature, valproic acid (VPA) treatment, various vectors, and additives were optimized independently and then combined(More)
Homodimers of the truncated hepatitis E virus (HEV) capsid proteins, E2 and p239, were conformed to model the dominant antigenic determinants of HEV. Using E2 as an immunogen, two neutralizing monoclonal antibodies (mAbs), namely 8C11 and 8H3, were produced. We constructed a mouse-human chimeric antibody derived from 8C11 and its expression in Chinese(More)
Highly pathogenic H5N1 virus infection causes severe disease and a high rate of fatality in humans. Development of humanized monoclonal antibodies may provide an efficient therapeutic regime for H5N1 virus infection. In the present study, broadly cross-reactive monoclonal antibodies (MAbs) derived from mice were humanized to minimize immunogenicity. One(More)
The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen,(More)
A panel of 52 murine monoclonal antibodies was found to recognize antigenic determinants that had been conserved among all major genetic subgroups of the H5N1 avian influenza virus prevalent since 1997. We screened a phage display library for peptides recognized by one such antibody (8H5). We analysed the specificity of 8H5 for reactive peptides presented(More)
Several peptide mimics of a conserved H5N1 avian influenza virus neutralization site recognized by 8H5 mAb have been reported previously. In this study, the secondary and possibly higher structural orders of the peptide mimics 122 and 125 were investigated and found to be closely related to the specific binding with 8H5 mAb. These two peptide mimics were(More)
Hg(II) is well-known for quenching fluorescence in a distance dependent manner. Nevertheless, when we exposed the fluorophore of a green fluorescent protein (GFP) toward Hg(II), through H148C mutation, the GFP fluorescence could be "lighted up" by Hg(II) down to sub-nM level. The detection linear range is 0.5-3.0 nM for protein solutions at 8.0 nM. The(More)
A sub-library based on peptide mimic 125 was designed and constructed, and 18 phagotopes specifically binding 8H5mAb were isolated. Antisera against three phagotopes, containing peptide 12MH-1, 12MH-5 and 12MH-8 reacted with 3 different H5N1 virus strains, but not with 2 H1N1 and 2 H3N2 viruses by Dot blots. The affinity of 12MH-8 was approximately eight(More)
P24 antigen is the main structural protein of HIV-1, its detection provide a means to aid the early diagnosis of HIV-1 infection. The aim of this study was to improve the selectivity and sensitivity of the HIV P24 diagnostic assay by developing a cohort of 9E8 affinity-matured antibodies through in vitro phage affinity maturation which was performed by(More)