Learn More
Arsenic trioxide (As₂O₃) has potential anti-cancer activity against a wide range of carcinomas via apoptosis induction or oncoprotein degradation. The mechanisms involved are not fully elucidated. Here, we demonstrated that As₂O₃ induced-apoptosis in HeLa and MCF-7 cancer cells was in part triggered by tubulin polymerization. High expression of JWA promoted(More)
Trastuzumab, the first antibody widely used in anti-HER2 targeted therapy, dramatically improved the overall outcome of HER2 positive breast cancer patients. However, trastuzumab resistance emerged as a major problem in its clinical application. In order to explore mechanisms underlying trastuzumab resistance, we performed RNA-Seq to analyze the gene(More)
Cancer epigenetics plays an important role in the pathogenesis of many cancers including gastric cancer. Histone deacetylases (HDACs) emerge as exciting therapeutic targets for cancer treatment and prevention. In this study, we identified DTWD1 as one of the 122 genes upregulated after treatment of trichostatin A (TSA) in two gastric cancer cell lines.(More)
A major obstacle in cancer chemotherapy is the phenomenon of multidrug resistance (MDR), increased P-glycoprotein expression, and abnormal apoptotic processes that may contribute to MDR. Our previous studies demonstrated that JWA is a pro-apoptotic molecule and required for arsenic trioxide and all-trans-retinoic acid-induced cancer cell apoptosis. In this(More)
Cisplatin is the first-line agent utilized for the clinical treatment of a wide variety of solid tumors including gastric cancer. However, the intrinsic or acquired cisplatin resistance is often occurred in patients with gastric cancer and resulted in failure of cisplatin therapy. In order to investigate if miRNA involves in cisplatin resistance of human(More)
Cisplatin is one of the most commonly used drugs in the treatment of gastric cancer. However, drug resistance is a major obstacle for effective treatment and originates in multiple mechanisms such as enhanced DNA repair and anti-apoptosis. Our previous results demonstrated that XRCC1 was a key regulator of cisplatin induced DNA damage and apoptosis. TXNL1,(More)
Histone methylation is one of the most important chromatin posttranslational modifications. It has a range of influences on nuclear functions including epigenetic inheritance, transcriptional regulation and the maintenance of genome integrity. Changes in histone methylation status take part in various physiological and pathological processes. KDM5B (lysine(More)
Long-term application of Tamoxifen (TAM) is usually recommended for hormone receptor positive breast cancer patients. Unfortunately, TAM will inevitably increase the incidence of endometrial hyperplasia even endometrial cancer. Despite of substantial investigations, no effective approaches to prevent TAM-induced endometrial carcinogenesis have been(More)
3,3'-Diindolylmethane (DIM), a class of relatively non-toxic indole derivatives from cruciferous vegetables, has been reported as a promising anticancer phytochemical, but the underlying molecular mechanism is not completely elucidated. In the present study we report a novel regulation of autophagy by DIM in human gastric cancer cells. We found that DIM(More)
Cancer cells reprogram metabolism to coordinate their rapid growth. They addict on glutamine metabolism for adenosine triphosphate generation and macromolecule biosynthesis. In this study, we report that glutamine deprivation retarded cell growth and induced prosurvival autophagy. Autophagy inhibition by chloroquine significantly enhanced glutamine(More)