Learn More
This paper considers a second-order consensus problem for multiagent systems with nonlinear dynamics and directed topologies where each agent is governed by both position and velocity consensus terms with a time-varying asymptotic velocity. To describe the system's ability for reaching consensus, a new concept about the generalized algebraic connectivity is(More)
This paper studies some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. First, basic theoretical analysis is carried out for the case where for each agent the second-order dynamics are governed by the position and velocity terms and the asymptotic velocity is constant. A necessary and sufficient condition is(More)
This paper reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles, and unmanned underwater vehicles, has been a very active research(More)
There exist some fundamental and yet challenging problems in pinning control of complex networks: (1) What types of pinning schemes may be chosen for a given complex network to realize synchronization? (2) What kinds of controllers may be designed to ensure the network synchronization? (3) How large should the coupling strength be used in a given complex(More)
This paper studies second-order consensus inmulti-agent dynamical systemswith sampled position data. A distributed linear consensus protocol with second-order dynamics is designed, where both the current and some sampled past position data are utilized. It is found that second-order consensus in such amultiagent system cannot be reached without any sampled(More)
This technical note studies the consensus problem for cooperative agents with nonlinear dynamics in a directed network. Both local and global consensus are defined and investigated. Techniques for studying the synchronization in such complex networks are exploited to establish various sufficient conditions for reaching consensus. The local consensus problem(More)
Many real-world large-scale complex networks demonstrate a surprising degree of synchronization. To unravel the underlying mechanics of synchronization in these complex networks, a generally linearly hybrid coupled network with time-varying delay is proposed, and its global synchronization is then further investigated. Several effective sufficient(More)
Distributed consensus tracking is addressed in this paper for multi-agent systems with Lipschitz-type node dynamics. The main contribution of this work is solving the consensus tracking problem without the assumption that the topology among followers is strongly connected and fixed. By using tools from M-matrix theory, a class of consensus tracking(More)