Wenwei Liu

  • Citations Per Year
Learn More
For the energy management problems for demand response in electricity grid, a Metropolis Criterion based fuzzy Q-learning consumer energy management controller (CEMC) is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for the consumer behavior in electricity grid. In this case, the(More)
The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system(More)
We present the design specifications and in-depth analysis of a terahertz (THz) broadband cross-polarization converter composed of a single-layer metasurface. This device can convert linearly polarized light into its cross-polarization in transmission mode. Different from other polarization conversion devices, this effect results from the suppression and(More)
The asymmetric transmission effect has attracted great interest due to its wide modern optical applications. In this Letter, we present the underlying theory, the design specifications, and the simulated demonstration of tunable dual-band asymmetric transmission for circularly polarized waves with a graphene planar chiral metasurface. The spectral position(More)
A novel method is proposed to generate vector beams with arbitrary spatial variation of phase and linear polarization at the nanoscale using compact plasmonic metasurfaces with rectangular nanoapertures. The physical mechanism underlying the simultaneous control of light polarization and phase is explained. Vector beams with different spiral phasefronts are(More)
We study traffic dynamics and propose a new routing strategy based on the local topological information in scale-free network. According to the new routing strategy with a single tunable parameter, a packet is delivered to next node with probabilities that depend not only on the degrees of the next node but also the estimated waiting time at the new node.(More)
Chirality is a nearly ubiquitous natural phenomenon. Its minute presence in most naturally occurring materials makes it incredibly difficult to detect. Recent advances in metasurfaces indicate that they exhibit devisable chirality in novel forms; this finding offers an effective opening for studying chirality and its features in such nanostructures. These(More)
We present a method of fully interferometric, controllable anomalous refraction efficiency by introducing cross-modulated incident light based on plasmonic metasurfaces. Theoretical analyses and numerical simulations indicate that the anomalous and ordinary refracted beams generated from two opposite-helicity incident beams and following the generalized(More)
Plasmonic nanostructures have been considered as potential candidates for enhancing the nonlinear upconversion rate at nanoscale levels due to their strong near-field enhancement. Here, we propose a Fano-resonance-based mode-matching hybrid metasurface that combines the advantages of Fano resonances and mode-matching for boosting second-harmonic conversion.(More)
Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth(More)
  • 1