Learn More
Topic modeling has been proved to be an effective method for exploratory text mining. It is a common assumption of most topic models that a document is generated from a mixture of topics. In real-world scenarios, individual documents usually concentrate on several salient topics instead of covering a wide variety of topics. A real topic also adopts a narrow(More)
Community detection which discovers densely connected structures in a network has been studied a lot. In this paper, we study online community search which is practically useful but less studied in the literature. Given a query vertex in a graph, the problem is to find meaningful communities that the vertex belongs to in an online manner. We propose a novel(More)
It is quite common for networks emerging nowadays to have labels or textual contents on the nodes. On such networks, we study the problem of top-k nearest keyword (k-NK) search. In a network G modeled as an undirected graph, each node is attached with zero or more keywords, and each edge is assigned with a weight measuring its length. Given a query node q(More)
Many existing methods on review spam detection considering text content merely utilize simple text features such as content similarity. We explore a novel idea of exploiting text generality for improving spam detection. Besides, apart from the task of review spam detection, although there have also been some works on identifying the review spam-mers (users)(More)
  • 1