Wenqiong Joan Chen

Learn More
We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene-resistance (R)(More)
Numerous studies have shown that transcription factors are important in regulating plant responses to environmental stress. However, specific functions for most of the genes encoding transcription factors are unclear. In this study, we used mRNA profiles generated from microarray experiments to deduce the functions of genes encoding known and putative(More)
Plants directly assimilate minerals from the environment and thus are key for acquisition of metals by all subsequent consumers. Limited bio-availability of copper, zinc and iron in soil decreases both the agronomic productivity and the nutrient quality of crops. Understanding the molecular mechanisms underlying metal homeostasis in plants is a prerequisite(More)
Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using phi29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA),(More)
The signal transduction network controlling plant responses to pathogens includes pathways requiring the signal molecules salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The network topology was explored using global expression phenotyping of wild-type and signaling-defective mutant plants, including eds3, eds4, eds5, eds8, pad1, pad2, pad4,(More)
The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt(More)
Regulation of production of the translational apparatus via the stringent factor ppGpp in response to amino acid starvation is conserved in many bacteria. However, in addition to this core function, it is clear that ppGpp also exhibits genus-specific regulatory effects. In this study we used Affymetrix GeneChips to more fully characterize the regulatory(More)
Genome-wide transcriptome analyses have identified hundreds of genes encoding transcription factors that are induced or repressed by a range of environmental stresses. Their complex expression patterns suggest that stress tolerance and resistance are controlled at the transcriptional level by a complicated gene regulatory network. The next steps towards(More)
Genetic control of gene transcription is a key component in genome evolution. To understand the transcriptional basis of natural variation, we have studied genome-wide variations in transcription and characterized the genetic variations in regulatory elements among Arabidopsis accessions. Among five accessions (Col-0, C24, Ler, WS-2, and NO-0) 7,508 probe(More)
Chilling is a common abiotic stress that leads to economic losses in agriculture. By comparing the transcriptome of Arabidopsis under normal (22 degrees C) and chilling (13 degrees C) conditions, we have surveyed the molecular responses of a chilling-resistant plant to acclimate to a moderate reduction in temperature. The mRNA accumulation of approximately(More)