Learn More
We describe the experimental realization of planar plasmonic THz guided-wave devices using periodically perforated metal films. These perforated films behave as effective media for which the dielectric function can be broadly engineered. We initially use transmission measurements to measure the complex dielectric constants of these effective media and show(More)
Endogenous retroviruses (ERVs) are important retroelements that reside in host genomes. However, ERV expression patterns and regulatory mechanisms are poorly understood. In this study, chicken embryo fibroblasts (CEFs) and MSB1 cells infected with Marek’s disease virus (MDV) exhibited significantly increased expression of env from the endogenous retrovirus(More)
Plasmonic nanostructures enable light to be concentrated into nanoscale 'hotspots', wherein the intensity of light can be enhanced by orders of magnitude. This plasmonic enhancement significantly boosts the efficiency of nanoscale light-matter interactions, enabling unique linear and nonlinear optical applications. Large enhancements are often observed(More)
We directly measure the Gouy phase shift of surface plasmon-polaritons as they evolve through the focus using terahertz (THz) time-domain spectroscopy. This is accomplished by using a semi-circular groove inscribed in a metal foil to couple broadband freely propagating THz radiation to a converging propagating surface wave. Since the spatial properties of(More)
The important roles of myogenic regulatory factors (MRF) in mammalian skeletal myogenesis have been well studied, but few equivalent studies have been performed in poultry. The expression pattern of MRF during the embryonic development of skeletal muscle in ducks remains unknown. In this study, we identified Myf5, Myf6, MyoD, and myogenin genes in Jinding(More)
The strong coupling between localized surface plasmons and surface plasmon polaritons in a double resonance surface enhanced Raman scattering (SERS) substrate is described by a classical coupled oscillator model. The effects of the particle density, the particle size and the SiO2 spacer thickness on the coupling strength are experimentally investigated. We(More)
The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles(More)
Silicon microwire arrays have attracted considerable attention recently due to the opportunity they present as highly efficient and cost-effective solar cells. In this study, we report on efficient Si microwire array solar cells with areas of 1 cm(2) and Air Mass 1.5 Global conversion efficiencies of up to 10.6%. These solar cells show an open-circuit(More)
– In this paper 1 , we propose a highly scalable packet switch that is based on a multi-stage multi-layer architecture made up of many modest size switches. This new architecture resembles the famous Clos-network studied in circuit switching systems except that it has distributed shared memories in the central stage. We call it Central-stage Buffered(More)