Ke Jian Liu6
Xinchun Jin4
6Ke Jian Liu
4Xinchun Jin
Learn More
Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB(More)
Normobaric hyperoxia (NBO) has been shown to be neuro- and vaso-protective during ischemic stroke. However, the underlying mechanisms remain to be fully elucidated. Activation of NADPH oxidase critically contributes to ischemic brain damage via increase in ROS production. We herein tested the hypothesis that NBO protects the blood-brain barrier (BBB) via(More)
Stroke is a leading cause of death and disability due to disturbance of blood supply to the brain. As brain is highly sensitive to hypoxia, insufficient oxygen supply is a critical event contributing to ischemic brain injury. Normobaric hyperoxia (NBO) that aims to enhance oxygen delivery to hypoxic tissues has long been considered as a logical(More)
BACKGROUND The BCRP/ABCG2 transporter, which mediates drug resistance in many types of cells, depends on energy provided by ATP hydrolysis. Here, a retrovirus encoding a shRNA targeting the ATP-binding domain of this protein was used to screen for highly efficient agents that could reverse drug resistance and improve cell sensitivity to drugs, thus laying(More)
Using in vitro oxygen-glucose deprivation (OGD) model, we have previously demonstrated that 2-h OGD induces rapid, caveolin-1-mediated dissociation of claudin-5 from the cellular cytoskeletal framework and quick endothelial barrier disruption. In this study, we further investigated the fate of translocated claudin-5 and the mechanisms by which OGD promotes(More)
Pathological release of excess zinc ions and the resultant increase in intracellular zinc has been implicated in ischemic brain cell death, although the underlying mechanisms are not fully understood. Since zinc promotes the formation of the autophagic signal, reactive oxygen species (ROS), and increases autophagy, a known mechanism of cell death, we(More)
BACKGROUND Normobaric hyperoxia (NBO) therapy is neuroprotective in acute ischemic stroke. However, how long the NBO should last to obtain optimal outcome is still unclear. Reports show that ischemic penumbra blood supply may remain compromised for a long period after ischemia-reperfusion, which would impair tissue oxygenation in ischemic penumbra.(More)
N-acetylcysteine (NAC), a precursor of glutathione that reduces reperfusion-induced injury, has been shown protection when it was administered pre-ischemia. However, less is known about the effect when it was given post-ischemia and there is no positive result associated with anti-oxidant in clinical trials. This study investigated the neuro- and(More)
To tune the efficiency of organic semiconductor devices it is important to understand limiting factors as trapping mechanisms for excitons or charges. An understanding of such mechanisms deserves an accurate description of the involved electronical states in the given environment. In this study, we investigate how a polarizable surrounding influences the(More)
Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic(More)