Learn More
Matrix metalloproteinases (MMPs) disrupt the blood-brain barrier (BBB) during reperfusion. Occludin and claudins are recently described tight junction proteins (TJPs) that form the BBB. We hypothesized that the opening of the BBB was because of the degradation of TJPs by the MMPs. Spontaneously hypertensive rats had a 90 mins middle cerebral artery(More)
Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB(More)
Oxygen therapy for ischemic stroke remains controversial. Too much oxygen may lead to oxidative stress and free radical damage while too little oxygen will have minimal therapeutic effect. In vivo electron paramagnetic resonance (EPR) oximetry, which can measure localized interstitial partial oxygen (pO2), can monitor penumbral changes of pO2. Therefore, we(More)
Early blood-brain barrier (BBB) disruption resulting from excessive neurovascular proteolysis by matrix metalloproteinases (MMPs) is closely associated with hemorrhagic transformation events in ischemic stroke. We have shown that normobaric hyperoxia (NBO) treatment reduces MMP-9 increase in the ischemic brain. The aim of this study was to determine whether(More)
Matrix metalloproteinase-9 (MMP-9) and NADPH oxidase contribute to blood-brain barrier (BBB) disruption after ischemic stroke. We have previously shown that normobaric hyperoxia (NBO) treatment reduces MMP-9 and oxygen free radical generation in ischemic brain. In this study, we tested the hypothesis that NBO protects the BBB through inhibiting NADPH(More)
Stroke causes heterogeneous changes in tissue oxygenation, with a region of decreased blood flow, the penumbra, surrounding a severely damaged ischemic core. Treatment of acute ischemic stroke aims to save this penumbra before its irreversible damage by continued ischemia. However, effective treatment remains elusive due to incomplete understanding of(More)
Arsenic enhances skin tumor formation when combined with other carcinogens, including UV radiation (UVR). In this study we report that low micromolar concentrations of arsenite synergistically increases UVR-induced oxidative DNA damage in human keratinocytes as detected by 8-hydroxyl-2'-deoxyguanine (8-OHdG) formation. Poly(ADP-ribose) polymerase-1 (PARP-1)(More)
Blood-brain barrier (BBB) disruption occurring within the first few hours of ischemic stroke onset is closely associated with hemorrhagic transformation following thrombolytic therapy. However, the mechanism of this acute BBB disruption remains unclear. In the neurovascular unit, neurons do not have direct contact with the endothelial barrier; however, they(More)
Human arsenic exposure is associated with increased risk of skin cancer, and arsenite greatly enhances ultraviolet (UV)-induced skin tumors in a mouse model of carcinogenesis. Inhibition of DNA repair is one proposed mechanism for the observed cocarcinogenicity. We have previously demonstrated that low concentrations of arsenite inhibit poly(ADP-ribose)(More)
BACKGROUND AND PURPOSE A major limitation of tissue plasminogen activator (tPA) thrombolysis for ischemic stroke is the narrow time window for safe and effective therapy. Delayed tPA thrombolysis increases the risk of cerebral hemorrhage and mortality, which, in part, is related to neurovascular proteolysis mediated by matrix metalloproteinases (MMPs). We(More)