Learn More
Metal-based negative refractive-index materials have been extensively studied in the microwave region. However, negative-index metamaterials have not been realized at near-IR or visible frequencies due to difficulties of fabrication and to the generally poor optical properties of metals at these wavelengths. In this Letter, we report the first fabrication(More)
Numerical simulations of a near-infrared negative-index metama-terial (NIM) slab consisting of multiple layers of perforated metal-dielectric stacks exhibiting a small imaginary part of the index over the wavelength range for negative refraction are presented. A consistent effective index is obtained using both scattering matrix and modal analysis(More)
We investigated the effect of taurine on inflammatory cytokine expression, on astrocyte activity and cerebral edema and functional outcomes, following traumatic brain injury (TBI) in rats. 72 rats were randomly divided into sham, TBI and Taurine groups. Rats subjected to moderate lateral fluid percussion injury were injected intravenously with taurine(More)
We numerically demonstrate a metamaterial with both negative ε and negative μ over an overlapping near-infrared wavelength range resulting in a low loss negative-index material. Parametric studies optimizing this negative index are presented. This structure can be easily fabricated with standard semiconductor processing techniques. Influence of the(More)
We experimentally demonstrate a comparatively low-loss negative-index metamaterial with the magnitude of the real part of the index comparable with the imaginary part. Over 40% transmission is achieved in the negative-index region by structural adjustment of the impedance matching between the metamaterial and the air–substrate claddings. This structure has(More)
A family of coupled nanostrips with varying dimensions is demonstrated exhibiting optical magnetic responses across the whole visible spectrum, from red to blue. We refer to such a phenomenon as rainbow magnetism. The experimental and analytical studies of such structures provide us with a universal building block and a general recipe for producing(More)
Correlated electron materials can undergo a variety of phase transitions, including superconductivity, the metal-insulator transition and colossal magnetoresistance. Moreover, multiple physical phases or domains with dimensions of nanometres to micrometres can coexist in these materials at temperatures where a pure phase is expected. Making use of the(More)
—In the domain of computer security, how to enhance the speed of RSA algorithm has been the research hot spot. With the recent tremendous increase in Graphics Processing Unit's computing capability as a co-processor of the CPU, Nvidia's Compute Unified Device Architecture (CUDA) can greatly benefit single instruction multiple thread styled, computationally(More)