Learn More
Mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hWJMSCs) became prospective seed cell candidate for tissue engineering and cell-based therapy because of its variety source, easy procurement, robust proliferation, and high purity compared with bone marrow- and adipose-derived MSCs. Such neonatal stem cells can be isolated from a(More)
We developed a natural, acellular, 3-D interconnected porous scaffold derived from cartilage extracellular matrix (ECM). Human cartilage was physically shattered, then decellularized sequentially with use of hypotonic buffer, TritonX-100, and a nuclease solution and made into a suspension. The scaffold was fabricated by simple freeze-drying and(More)
Methamphetamine (METH) causes damage in the striatum at pre- and post-synaptic sites. Exposure to METH induces long-term depletions of dopamine (DA) terminal markers such as tyrosine hydroxylase (TH) and DA transporters (DAT). METH also induces neuronal apoptosis in some striatal neurons. The purpose of this study is to demonstrate which occurs first,(More)
Methamphetamine (METH) is a psychostimulant that induces neural damage in experimental animals and humans. A binge (usually in the 5-10 mg/kg dose range 4 x at 2 h intervals) and the acute bolus drug administration (20-40 mg/kg) of METH have been employed frequently to study neurotoxicity in the brain. In this study we have compared these drug delivery(More)
Methamphetamine (METH) is an addictive psychostimulant that induces damage to the dopamine terminals and the apoptosis of some neurons of the striatum. Our laboratory demonstrated using either a single bolus dose (30 mg/kg) or a binge (10 mg/kg 4x at 2-h intervals) of METH that pharmacological blockade of the substance P receptor (neurokinin-1) attenuates(More)
Cell-based therapy has achieved promising functional recovery for peripheral nerve repair. Although Schwann cells (SCs) and bone marrow derived mesenchymal stromal cells (BM-MSCs) are the main cell source for nerve tissue engineering, the clinical application is limited because of donor site morbidity, the invasive procedure, and the decreased number of SCs(More)
The present study aims to investigate the feasibility of tissue-engineered cartilage constructed in vivo and in vitro by dynamically culturing adipose-derived stem cells (ADSCs) with an articular cartilage acellular matrix in a bioreactor and subsequently implanting the cartilage in nude mice. ADSCs were proliferated, combined with three dimensional(More)
UNLABELLED We propose a method of preparing a novel cell carrier derived from natural cartilage extracellular matrix (ECM), designated cartilage ECM-derived particles (CEDPs). Through a series of processes involving pulverization, sieving, and decellularization, fresh cartilage was made into CEDPs with a median diameter of 263 ± 48 μm. Under microgravity(More)
Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in(More)
Cartilage extracellular matrix (ECM) is composed primarily of the network type II collagen (COLII) and an interlocking mesh of fibrous proteins and proteoglycans (PGs), hyaluronic acid (HA), and chondroitin sulfate (CS). Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through(More)