Learn More
Image-space line integral convolution (LIC) is a popular approach for visualizing surface vector fields due to its simplicity and high efficiency. To avoid inconsistencies or color blur during the user interactions in the image-space approach, some methods use surface parameterization or 3D volume texture for the effect of smooth transition, which often(More)
Traditional techniques for measuring similarities between time series are based on hand-crafted similarity measures, whereas more recent learning-based approaches cannot exploit external supervision. We combine ideas from time-series modeling and metric learning, and study siamese recurrent networks (SRNs) that minimize a classification loss to learn a good(More)
We present a new model for multivariate time-series classification, called the hidden-unit logistic model (HULM), that uses binary stochastic hidden units to model latent structure in the data. The hidden units are connected in a chain structure that models temporal dependencies in the data. Compared with the prior models for time-series classification such(More)
Typical techniques for sequence classification are designed for well-segmented sequences which have been edited to remove noisy or irrelevant parts. Therefore, such methods cannot be easily applied on noisy sequences expected in real-world applications. In this paper, we present the Temporal Attention-Gated Model (TAGM) which integrates ideas from attention(More)
  • 1