Wendy S. Hahn

Learn More
Oxidative stress is linked to the production of reactive lipid aldehydes that non-enzymatically alkylate cysteine, histidine, or lysine residues in a reaction termed protein carbonylation. Reactive lipid aldehydes and their derivatives are detoxified via a variety of phase I and phase II systems, and when antioxidant defenses are compromised or oxidative(More)
Obesity-induced insulin resistance has been linked to adipose tissue lipid aldehyde production and protein carbonylation. Trans-4-hydroxy-2-nonenal (4-HNE) is the most abundant lipid aldehyde in murine adipose tissue and is metabolized by glutathione S-transferase A4 (GSTA4), producing glutathionyl-HNE (GS-HNE) and its metabolite(More)
ULK1 (unc-51 like kinase 1) is a serine/threonine protein kinase that plays a key role in regulating the induction of autophagy. Recent studies using autophagy-defective mouse models, such as atg5- or atg7-deficient mice, revealed an important function of autophagy in adipocyte differentiation. Suppression of adipogenesis in autophagy-defective conditions(More)
Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy(More)
We have previously characterized lipocalin 2 (Lcn2) as a new adipokine having a critical role in energy and lipid metabolism in male mice. Previous studies by others have suggested that Lcn2 is a putative target gene of estrogens. In this study, we reported the effect of Lcn2 deficiency on estradiol biosynthesis and estrogen receptor signaling in female(More)
Reactive oxygen species-mediated attack of the acyl chains of polyunsaturated fatty acids and triglycerides leads to the formation of lipid hydroperoxides. Lipid hydroperoxides are subject to nonenzymatic Fenton chemistry producing a variety of reactive aldehydes that covalently modify proteins in a reaction referred to as protein carbonylation. Given the(More)
Mitochondrially-derived oxidative stress has been implicated in the development of obesity-induced insulin resistance and is correlated with down regulation of Peroxiredoxin-3 (Prdx3). Prdx3 knockout mice exhibit whole-body insulin resistance, while Prdx3 transgenic animals remain insulin sensitive when placed on a high fat diet. To define the molecular(More)
Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Macrophage infiltration of adipose tissue and the chronic low-grade production of inflammatory cytokines have been mechanistically linked to the development of insulin resistance, the forerunner of type 2 diabetes mellitus. In this study, we(More)
  • 1