Wendy E. Thomas

Learn More
Surface adhesion of bacteria generally occurs in the presence of shear stress, and the lifetime of receptor bonds is expected to be shortened in the presence of external force. However, by using Escherichia coli expressing the lectin-like adhesin FimH and guinea pig erythrocytes in flow chamber experiments, we show that bacterial attachment to target cells(More)
The bacterial adhesive protein, FimH, is the most common adhesin of Escherichia coli and mediates weak adhesion at low flow but strong adhesion at high flow. There is evidence that this occurs because FimH forms catch bonds, defined as bonds that are strengthened by tensile mechanical force. Here, we applied force to single isolated FimH bonds with an(More)
High shear enhances the adhesion of Escherichia coli bacteria binding to mannose coated surfaces via the adhesin FimH, raising the question as to whether FimH forms catch bonds that are stronger under tensile mechanical force. Here, we study the length of time that E. coli pause on mannosylated surfaces and report a double exponential decay in the duration(More)
The Escherichia coli fimbrial adhesive protein, FimH, mediates shear-dependent binding to mannosylated surfaces via force-enhanced allosteric catch bonds, but the underlying structural mechanism was previously unknown. Here we present the crystal structure of FimH incorporated into the multiprotein fimbrial tip, where the anchoring (pilin) domain of FimH(More)
We determined whether the molecular structures through which force is applied to receptor-ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3-1.5 microm in length)(More)
It is generally assumed that bacteria are washed off surfaces as fluid flow increases because they adhere through 'slip-bonds' that weaken under mechanical force. However, we show here that the opposite is true for Escherichia coli attachment to monomannose-coated surfaces via the type 1 fimbrial adhesive subunit, FimH. Raising the shear stress (within the(More)
One of the most exciting discoveries in biological adhesion is the recent and counter-intuitive observation that the lifetimes of some biological adhesive bonds, called catch bonds, are enhanced by tensile mechanical force. At least two types of adhesive proteins have been shown to form catch bonds--blood proteins called selectins and a bacterial protein(More)
Catch bonds are bonds between a ligand and its receptor that are enhanced by mechanical force pulling the ligand-receptor complex apart. To date, catch-bond formation has been documented for the most common Escherichia coli adhesin, FimH, and for P-/L-selectins, universally expressed by leukocytes, platelets, and blood vessel walls. One compelling(More)
Cysteine bonds are found near the ligand-binding sites of a wide range of microbial adhesive proteins, including the FimH adhesin of Escherichia coli. We show here that removal of the cysteine bond in the mannose-binding domain of FimH did not affect FimH-mannose binding under static or low shear conditions (< or = 0.2 dyne cm(-2)). However, the adhesion(More)