Learn More
Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct(More)
—Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. In this paper, we develop and analyze low-energy(More)
In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data(More)
In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminate information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data(More)
—Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application(More)
Current trends in computing include increases in both distribution and wireless connectiv-ity, leading to highly dynamic, complex environments on top of which applications must be built. The task of designing and ensuring the correctness of applications in these environments is similarly becoming more complex. The unified goal of much of the research in(More)
—In multihop wireless sensor networks that are often characterized by many-to-one (convergecast) traffic patterns, problems related to energy imbalance among sensors often appear. Sensors closer to a data sink are usually required to forward a large amount of traffic for sensors farther from the data sink. Therefore, these sensors tend to die early, leaving(More)
In order to conserve battery power in very dense sensor networks, some sensor nodes may be put into the sleep state while other sensor nodes remain active for the sensing and communication tasks. In this paper, we study the node sleep scheduling problem in the context of clustered sensor networks. We propose and analyze the Linear Distance-based Scheduling(More)
In a sensor network, the infrastructure (in terms of the sensor capabilities, number of sensors, and deployment strategy) plays a significant role in determining the performance of the network. In this paper, we study the effect of infrastructure decisions on the performance of a sensor network. We study the effect of the infrastructure for two types of(More)
— As wireless sensor networks continue to attract more attention, new ideas for applications are continually being developed, many of which involve consistent coverage of a given surveillance area. Recently, several protocols and architectures have been proposed to maintain network connectivity and adequate coverage quality while minimizing the drain on the(More)