Learn More
We prove that the scaling limit of loop-erased random walk in a simply connected domain D C is equal to the radial SLE 2 path. In particular, the limit exists and is conformally invariant. It follows that the scaling limit of the uniform spanning tree in a Jordan domain exists and is conformally invariant. Assuming that ∂D is a C 1 simple closed curve, the(More)
This paper proves conjectures originating in the physics literature regarding the intersection exponents of Brownian motion in a half-plane. For instance, suppose that B and B ′ are two independent planar Brownian motions started from distinct points in a half-plane H. Then as t → ∞, P B[0, t] ∩ B ′ [0, t] = ∅ and B[0, t] ∪ B ′ [0, t] ⊂ H = t −5/3+o(1). The(More)
We derive the exact value of intersection exponents between planar Brow-nian motions or random walks, confirming predictions from theoretical physics by Duplantier and Kwon. Let B and B ′ be independent Brownian motions (or simple random walks) in the plane, started from distinct points. We prove that the probability that the paths B[0, t] and B ′ [0, t] do(More)
A planar self-avoiding walk (SAW) is a nearest neighbor random walk path in the square lattice with no self-intersection. A planar self-avoiding polygon (SAP) is a loop with no self-intersection. In this paper we present conjectures for the scaling limit of the uniform measures on these objects. The conjectures are based on recent results on the stochastic(More)