Learn More
This paper presents work on the development of a microfluidic device using super-paramagnetic beads for sampling and mixing. The beads are manipulated via an external rotating permanent magnet in a microfluidic channel. Efficient mixing is achieved in a short distance with this method. Modeling shows the variables which influence the mixing are flow rate,(More)
In this work, we introduce anisotropically shaped, ultrathin micro- and nano-capsules fabricated by layer-by-layer approach. The original cubic and tetrahedral shapes of the template particles were replicated to produce hollow capsules with well-defined edges. Introducing tannic acid as a component of LbL shells resulted in enhanced chemical stability of(More)
Abnormal cell mechanical stiffness can point to the development of various diseases including cancers and infections. We report a new microfluidic technique for continuous cell separation utilizing variation in cell stiffness. We use a microfluidic channel decorated by periodic diagonal ridges that compress the flowing cells in rapid succession. The(More)
Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that(More)
Eyelashes are ubiquitous, although their function has long remained a mystery. In this study, we elucidate the aerodynamic benefits of eyelashes. Through anatomical measurements, we find that 22 species of mammals possess eyelashes of a length one-third the eye width. Wind tunnel experiments confirm that this optimal eyelash length reduces both deposition(More)
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves(More)
A survey of the prevalence rate, pathogenic subspecies, and risk factors of mycotic mastitis in dairy cows from Heilongjiang Province, China, was conducted. Milk samples from 412 cows with chronic mastitis were collected and cultured on 8 % sheep blood agar, MacConkey agar, and Sabouraud agar with chloramphenicol. Counting of the morphologically distinct(More)
Impairment of coronary artery flow, in either acute or chronic conditions, is a severe complication of transcatheter aortic valve (TAV) implantation, which can arise due to improper TAV positioning. However, little work has been done to quantify the effects of the TAV positioning on the coronary flow. In this study, a realistic in vitro model of coronary(More)
This study aims to investigate the capability of smoothed particle hydrodynamics (SPH), a fully Lagrangian mesh-free method, to simulate the bulk blood flow dynamics in two realistic left ventricular (LV) models. Three dimensional geometries and motion of the LV, proximal left atrium and aortic root are extracted from cardiac magnetic resonance imaging and(More)