Wenan Chen

Learn More
BACKGROUND Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and(More)
In methylome-wide association studies (MWAS) there are many possible differences between cases and controls (e.g. related to life style, diet, and medication use) that may affect the methylome and produce false positive findings. An effective approach to control for these confounders is to first capture the major sources of variation in the methylation data(More)
This paper attempts to predict Intracranial Pressure (ICP) based on features extracted from non-invasively collected patient data. These features include midline shift measurement and textural features extracted from Computed axial Tomography (CT) images. A statistical analysis is performed to examine the relationship between ICP and midline shift. Machine(More)
Meta-analysis of genome-wide association studies (GWAS) has become a useful tool to identify genetic variants that are associated with complex human diseases. To control spurious associations between genetic variants and disease that are caused by population stratification, double genomic control (GC) correction for population stratification in(More)
OBJECTIVES We have previously reported a top-ranked risk gene [i.e., serine incorporator 2 gene (SERINC2)] for alcohol dependence in individuals of European descent by analyzing the common variants in a genome-wide association study. In the present study, we comprehensively examined the rare variants [minor allele frequency (MAF)<0.05] in the NKAIN1-SERINC2(More)
In this paper we present an automated system based mainly on the computed tomography (CT) images consisting of two main components: the midline shift estimation and intracranial pressure (ICP) pre-screening system. To estimate the midline shift, first an estimation of the ideal midline is performed based on the symmetry of the skull and anatomical features(More)
We evaluate four association tests for rare variants-the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method-by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria(More)