Wen-sheng Shu

Learn More
Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes in mammals and plants. However, the systematic examination of lncRNAs in plants lags behind that in mammals. Recently, lncRNAs have been identified in Arabidopsis and wheat; however, no systematic screening of potential lncRNAs has been reported for the rice genome.(More)
A wide array of microorganisms survive and thrive in extreme environments. However, we know little about the patterns of, and controls over, their large-scale ecological distribution. To this end, we have applied a bar-coded 16S rRNA pyrosequencing technology to explore the phylogenetic differentiation among 59 microbial communities from physically and(More)
In an attempt to link the microbial community composition and function in mine tailings to the generation of acid mine drainage, we simultaneously explored the geochemistry and microbiology of six tailings collected from a lead/zinc mine, i.e. primary tailings (T1), slightly acidic tailings (T2), extremely acidic tailings (T3, T4 and T5) and orange-coloured(More)
Darwin's naturalisation conundrum describes the paradox that the relatedness of exotic species to native residents could either promote or hinder their success through opposing mechanisms: niche pre-adaptation or competitive interactions. Previous studies focusing on single snapshots of invasion patterns have provided support to both sides of the conundrum.(More)
The accumulation and transfer of Pb, Zn, Cu, and Cd along a soil-plant-insect-chicken food chain at contaminated sites were investigated. The study site nearing the Pb/Zn mine had been contaminated by heavy metals severely. Cadmium and Pb concentrations steadily declined with increasing trophic level (p < 0.01), but concentrations of Zn and Cu slightly(More)
The genetic diversity and population structure of seven populations of Sedum alfredii growing in lead/zinc (Pb/Zn) mine spoils or in uncontaminated soils from eastern and southern China were investigated using random amplified polymorphic DNA (RAPD) technology. Four of the sampled sites were heavily contaminated with heavy metals (Zn, Cd, Pb), and extremely(More)
Root aeration, arsenic (As) accumulation, and speciation in rice of 20 different genotypes with regular irrigation of water containing 0.4 mg As l(-1) were investigated. Different genotypes had different root anatomy demonstrated by entire root porosity (ranging from 12.43% to 33.21%), which was significantly correlated with radial oxygen loss (ROL)(More)
This study examined the microbial community in an acidic stream draining across the Yun-Fu pyrite mine (Guangdong, China), where extremely acidic mine water is a persistent feature due to the intensive surface mining activities. Analysis of terminal restriction fragment length polymorphism (TRFLP) of 16S rRNA gene sequences showed that microbial populations(More)
Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how(More)
High-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100(More)