Learn More
Extracellular beta-amyloid (A beta) deposit is considered as one of the primary factors that induce Alzheimer's disease (AD). The effects of various environmental factors, including temperature, ionic strength, and pH, on A beta (1-40) aggregation mechanisms were investigated in this study by spectrometry, isothermal titration calorimetry (ITC), and(More)
We previously showed that galectin-1 (GAL1) is an arsenic-binding protein. In the current study, we further characterize the interaction of GAL1 with sodium arsenite (As(III)). The GALl-As(III) complex was prepared from the cell extracts of GAL1-transfected Escherichia coli (E. coli) that were pretreated with As(III). The results of the circular dichroism(More)
The deposition of beta-amyloid (Abeta) on cell membranes is considered as one of the primary factors in having Alzheimer's disease (AD). Recent studies have suggested that certain components of plasma membrane, ganglioside and cholesterol could accelerate the accumulation of Abeta on the plasma membranes. However, the effect of cholesterol and ganglioside(More)
To improve transfection efficiency of nonviral vectors, biotinylated chitosan was applied to complex with DNA in different N/P ratios. The morphologies and the sizes of formed nanoparticles were suitable for cell uptake. The biotinylation decreased the surface charges of nanoparticles and hence reduced the cytotoxicity. The loading capacities of chitosan(More)
An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate (SBMA). The(More)
A vascular mimetic membrane system was used to investigate the effect of cholesterol content in lipid bilayer on the dynamics of the melittin-membrane penetration reaction with real-time monitoring by a piezoelectric sensor and the assessment morphology using atomic force microscopy (AFM). In the presence of 30% cholesterol in a noncharged(More)
Isothermal titration calorimetry (ITC) is one of the most powerful means for direct determination of thermodynamic information associated with most physiochemical and biological processes. The deposition and aggregation of β-amyloid (Aβ) on cell membranes was considered as one of the primary factors in having Alzheimer's disease (AD). Recently, a growing(More)
Protein misfolding and aggregation cause a large number of neurodegenerative diseases in humans due to (i) gain of function as observed in Alzheimer's disease, Huntington's disease, Parkinson's disease, and Prion's disease or (ii) loss of function as observed in cystic fibrosis and alpha1-antitrypsin deficiency. These misfolded proteins could either lead to(More)
The objective of this research is to understand the interaction mechanism of beta-amyloid (Abeta) with cell and were basically divided into two parts. The first part focused on the time-dependent structural changes of Abeta (1-40) by circular dichroism (CD) spectroscopy, thioflavin T (ThT) fluorescence assay, and atomic force microscopy (AFM). The second(More)
Isothermal titration calorimeters (ITCs) are thermodynamic instruments used for the determination of enthalpy changes in any physical/chemical reaction. This can be applied in various fields of biotechnology. This review explains ITC applications, especially in bioseparation, drug development and cell metabolism. In liquid chromatography, the(More)