Learn More
We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm constrained maximum likelihood estimate is introduced and studied. The rate of convergence for the estimate is obtained. Information-theoretical methods are used to(More)
In this article, we study the problem of testing the mean vectors of high dimensional data in both one-sample and two-sample cases. The proposed testing procedures employ maximum-type statistics and the parametric bootstrap techniques to compute the critical values. Different from the existing tests that heavily rely on the structural conditions on the(More)
This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions.(More)
Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large(More)
Recently, Chernozhukov, Chetverikov, and Kato [Ann. Statist. 42 (2014) 1564–1597] developed a new Gaussian comparison inequality for approximating the suprema of empirical processes. This paper exploits this technique to devise sharp inference on spectra of large random matrices. In particular, we show that two long-standing problems in random matrix theory(More)
  • 1