Learn More
Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply(More)
Progress in the scientific application of space-based scatterometer data over the past two decades is reviewed. There has been continuous improvement in coverage, resolution, and accuracy. Besides the traditional applications in weather and ocean-atmosphere interaction, which are based on ocean surface wind vectors, emerging applications over land and ice(More)
A novel coccobacilli group found previously in enhanced biological phosphorus removal (EBPR) systems was further revealed to have a high degree of diversity and distribution in various activated sludge systems. Phylogenetic analysis based on 14 existing and 18 newly retrieved 16S rRNA sequences revealed that these sequences formed a novel cohesive cluster(More)
The applicability of 454 pyrosequencing to characterize bacterial biofilm communities from two water meters of a drinking water distribution system was assessed. Differences in bacterial diversity and composition were observed. A better understanding of the bacterial ecology of drinking water biofilms will allow for effective management of water quality in(More)
Gut microbiota of invasive Asian silver carp (SVCP) and indigenous planktivorous gizzard shad (GZSD) in Mississippi river basin were compared using 16S rRNA gene pyrosequencing. Analysis of more than 440 000 quality-filtered sequences obtained from the foregut and hindgut of GZSD and SVCP revealed high microbial diversity in these samples. GZSD hindgut(More)
The utility of a high-density oligonucleotide microarray (microchip) for identifying strains of five closely related bacilli (Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus medusa and Bacillus subtilis) was demonstrated using an approach that compares the non-equilibrium dissociation rates ('melting curves') of all probe-target duplexes(More)
Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium inside a hyper-mesophilic (that is, between mesophilic and thermophilic),(More)
A new meso-diaminopimelic acid-containing, gram-positive bacterium was isolated from an activated sludge reactor showing enhanced biological phosphorus removal activity. The isolate was an asporogenous oval to rod-shaped bacterium, but occasionally formed clumps. The Neisser staining was positive, suggesting intracellular polyphosphate granules. The isolate(More)
In an acetate-fed anaerobic-aerobic membrane bioreactor, a deteriorated enhanced biological phosphorus removal (EBPR) community was developed (as determined based on the chemical profiles of organic substrate, soluble phosphate, and intracellular carbohydrate and polyhydroxyalkanote (PHA) concentrations). Microscopic observations revealed the dominance of(More)
The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate(More)