Learn More
Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1)(More)
The Arabidopsis thaliana F-box protein CORONATINE INSENSITIVE1 (COI1) perceives jasmonate (JA) signals and subsequently targets the Jasmonate-ZIM domain proteins (JAZs) for degradation by the SCF(COI1)-26S proteasome pathway to mediate various jasmonate-regulated processes, including fertility, root growth, anthocyanin accumulation, senescence, and defense.(More)
Jasmonates play a number of diverse roles in plant defense and development. CORONATINE INSENSITIVE1 (COI1), an F-box protein essential for all the jasmonate responses, interacts with multiple proteins to form the SCF(COI1) E3 ubiquitin ligase complex and recruits jasmonate ZIM-domain (JAZ) proteins for degradation by the 26S proteasome. To determine which(More)
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or(More)
The Arabidopsis Jasmonate ZIM-domain proteins (JAZs) act as substrates of SCF(COI1) complex to repress their downstream targets, which are essential for JA-regulated plant development and defense. The bHLH transcription factor MYC2 was found to interact with JAZs and mediate JA responses including JA-inhibitory root growth. Here, we identified another bHLH(More)
Anthocyanins are important plant pigments that fulfil many physiological and ecological functions. Anthocyanin biosynthesis is controlled by numerous regulatory factors at the transcriptional level. Jasmonates (JAs) has been shown to induce anthocyanin accumulation in several plant species, however, the molecular mechanism for JA-regulated anthocyanin(More)
The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis(More)
a Institute of Biotechnology Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China b Institute of Molecular Agrobiology, 1 Research Link, National University of Singapore, 117604, Republic of Singapore c Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084(More)
The F-box protein CORONATINE INSENSITIVE1 (COI1) plays a central role in jasmonate (JA) signaling and is required for all JA responses in Arabidopsis (Arabidopsis thaliana). To dissect JA signal transduction, we isolated the partially suppressing coi1 (psc1) mutant, which partially suppressed coi1 insensitivity to JA inhibition of root growth. The psc1(More)
Tubulointerstitial fibrosis (TIF) is the final common pathway in the end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is considered a major contributor to the TIF by increasing the number of myofibroblasts. Curcumin, a polyphenolic compound derived from rhizomes of Curcuma, has been shown to possess potent anti-fibrotic properties but the(More)