Learn More
Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can(More)
While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also(More)
The Bcl-2 family proteins are key regulators of apoptosis in human diseases and cancers. Though known to block apoptosis, Bcl-2 promotes cell death through an undefined mechanism. Here, we show that Bcl-2 interacts with orphan nuclear receptor Nur77 (also known as TR3), which is required for cancer cell apoptosis induced by many antineoplastic agents. The(More)
Excessive alcohol consumption is prevalent among adolescents and may result in lasting neurobehavioral consequences. The use of animal models to study adolescent alcohol exposure has the advantage of allowing for the control necessary in order to evaluate the effects of ethanol on the brain and separate such effects from genetic background and other(More)
OBJECTIVE To investigate regional activity abnormalities of first-episode remitted geriatric depression (RGD) using a resting-state functional magnetic resonance imaging (fMRI) in closely matched patients and healthy controls, and to examine the relationship between performances on neuropsychological tests and regional activity abnormalities. METHOD A(More)
Enhancers instruct spatio-temporally specific gene expression in a manner tightly linked to higher-order chromatin architecture. Critical chromatin architectural regulators condensin I and condensin II play non-redundant roles controlling mitotic chromosomes. But the chromosomal locations of condensins and their functional roles in interphase are poorly(More)
Substance abuse typically begins in adolescence; therefore, the impact of alcohol during this critical time in brain development is of particular importance. Epidemiological data indicate that excessive alcohol consumption is prevalent among adolescents and may have lasting neurobehavioral consequences. Loss of cholinergic input to the forebrain has been(More)
Nitric oxide (NO) plays essential roles in many physiological and developmental processes in plants, including biotic and abiotic stresses, which have adverse effects on agricultural production. However, due to the lack of findings regarding nitric oxide synthase (NOS), many difficulties arise in investigating the physiological roles of NO in vivo and thus(More)
Although adolescence is a common age to initiate alcohol consumption, the long-term consequences of exposure to alcohol at this time of considerable brain maturation are largely unknown. In studies utilizing rodents, behavioral evidence is beginning to emerge suggesting that the hippocampus may be persistently affected by repeated ethanol exposure during(More)
Inactivation of the tumor suppressor p53 by missense mutations is the most frequent genetic alteration in human cancers. The common missense mutations in the TP53 gene disrupt the ability of p53 to bind to DNA and consequently to transactivate downstream genes. However, it is still not fully understood how a large number of the remaining mutations affect(More)