Learn More
Higher cortical functions (perception, cognition, learning and memory) are in large part based on the integration of electrical and calcium signals that takes place in thin dendritic branches of neocortical pyramidal cells (synaptic integration). The mechanisms underlying the synaptic integration in thin basal dendrites are largely unexplored. We use a(More)
Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent(More)
The physiological responses of dendrites to dopaminergic inputs are poorly understood and controversial. We applied dopamine on one dendritic branch while simultaneously monitoring action potentials (APs) from multiple dendrites using either calcium-sensitive dye, voltage-sensitive dye or both. Dopaminergic suppression of dendritic calcium transients was(More)
In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2s) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists(More)
In CNS neurons most of synaptic integration takes place in thin dendritic branches that are difficult to study with conventional physiological recording techniques (electrodes). When cellular compartments are too small, or too many, for electrode recordings, optical methods bring considerable advantages. Here we focused our experimental effort on the(More)
In the field of cortical cellular physiology, much effort has been invested in understanding thick apical dendrites of pyramidal neurons and the regenerative sodium and calcium spikes that take place in the apical trunk. Here we focus on thin dendrites of pyramidal cells (basal, oblique, and tuft dendrites), and we discuss one relatively novel form of an(More)
Our knowledge about the developing human cerebral cortex is based on the analysis of fixed postmortem material. Here we use electrical recordings from unfixed human postmortem tissue to characterize the synaptic physiology and spontaneous network activity of pioneer cortical neurons ("subplate neurons"). Our electrophysiological experiments show that(More)
In neocortical pyramidal neurons, action potentials (APs) propagate from the axon into the dendritic tree to influence distal synapses. Traditionally, AP backpropagation was studied in the thick apical trunk. Here, we used the principles of optical imaging developed by Cohen to investigate AP invasion into thin dendritic branches (basal, oblique, and tuft)(More)
Before the human cortex is able to process sensory information, young postmitotic neurons must maintain occasional bursts of action-potential firing to attract and keep synaptic contacts, to drive gene expression, and to transition to mature membrane properties. Before birth, human subplate (SP) neurons are spontaneously active, displaying bursts of(More)
Hypocretin/orexin neurons regulate many behavioral functions, including addiction. Nicotine acts through nicotinic acetylcholine receptors (nAChRs) to alter firing rate of neurons throughout the brain, leading to addiction-related behaviors. While nAChRs are expressed in the hypothalamus and cholinergic fibers project to this structure, it is unclear how(More)