Wen-Kai Yu

  • Citations Per Year
Learn More
Conventional single-pixel cameras recover images only from the data recorded in one arm of the digital micromirror device, with the light reflected to the other direction not to be collected. Actually, the sampling in these two reflection orientations is correlated with each other, in view of which we propose a sampling concept of complementary compressive(More)
An experiment demonstrating lensless ghost imaging (GI) with sunlight has been performed. A narrow spectral line is first filtered out and its intensity correlation measured. With this true thermal light source, an object consisting of two holes is imaged. The realization of lensless GI with sunlight is a step forward toward the practical application of GI(More)
We present a protocol for an optical key distribution network based on computational correlation imaging, which can simultaneously realize privacy amplification and multiparty distribution. With current technology, the key distribution rate could reach hundreds of Mbit/s with suitable choice of parameters. The setup is simple and inexpensive, and may be(More)
We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an(More)
We present a protocol for the amplification and distribution of a one-time-pad cryptographic key over a point-to-multipoint optical network based on computational ghost imaging (GI) and compressed sensing (CS). It is shown experimentally that CS imaging can perform faster authentication and increase the key generation rate by an order of magnitude compared(More)
The performances of different thermal ghost imaging (GI) algorithms are compared in an experiment of computational GI using a digital micromirror device. Here we present a rather different evaluation criterion named receiver operating characteristic (ROC) analysis that serves as the performance of merit for the quantitative comparison. A ROC curve is(More)
An imaging system based on single photon counting and compressive sensing (ISSPCCS) is developed to reconstruct a sparse image in absolute darkness. The single photon avalanche detector and spatial light modulator (SLM) of aluminum micro-mirrors are employed in the imaging system while the convex optimization is used in the reconstruction algorithm. The(More)
This paper discusses the noisy phase retrieval problem: recovering a complex image signal with independent noise from quadratic measurements. Inspired by the dark fringes shown in the measured images of the array detector, a novel phase retrieval approach is proposed and demonstrated both theoretically and experimentally to recognize the dark fringes and(More)
Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive(More)
  • 1