Learn More
The subthalamic nucleus (STN) directly innervates the output structures of the basal ganglia, playing a key role in basal ganglia function. It is therefore important to understand the regulatory mechanisms for the activity of STN neurons. In the present study, we aimed to investigate how the intrinsic membrane properties of STN neurons interact with their(More)
The subthalamic nucleus (STN) plays a key role in motor control. Although previous studies have suggested that Ca(2+) conductances may be involved in regulating the activity of STN neurons, Ca(2+) channels in this region have not yet been characterized. We have therefore investigated the subtypes and functional characteristics of Ca(2+) conductances in STN(More)
Here we studied the auditory thalamic input to the insular cortex using mice as a model system. An insular auditory field (IAF) has recently been identified in mice. By using retrograde neuronal tracing, we identified auditory thalamic neurons projecting to the IAF, primary auditory cortex (AI), and anterior auditory field (AAF). After mapping the IAF, AAF,(More)
Channel density is a fundamental factor in determining neuronal firing and is primarily regulated during development through transcriptional and translational regulation. In adult rats, striatal cholinergic interneurons have a prominent A-type current and co-express Kv4.1 and Kv4.2 mRNAs. There is evidence that Kv4.2 plays a primary role in producing the(More)
Dopamine D4 receptors (D4R) are localized in the globus pallidus (GP), but their function remains unknown. In contrast, dopamine D2 receptor activation hyperpolarizes medium spiny neurons projecting from the striatum to the GP and inhibits GABA release. However, using slice preparations from D2R-deficient [D2 knock-out (D2KO)] mice, we found that dopamine(More)
receptors reduce N-type Ca 2/ currents in rat neostriatal cholinergic Lehman and Langer 1983; Stoof et al. 1982), it is unclear interneurons through a membrane-delimited, protein-kinase-C-insen-how this is accomplished. sitive pathway. In other cells, DA exerts its effects through activation of has long been known to regulate the activity of striatal(More)
We used voltage-sensitive-dye-based imaging techniques to identify and characterize the insular auditory field (IAF) in mice. Previous research has identified five auditory fields in the mouse auditory cortex, including the primary field and the anterior auditory field. This study confirmed the existence of the primary field and anterior auditory field by(More)
We investigated, in a midbrain parasagittal slice preparation of Wistar rats (postnatal day 9-17), the synaptic inhibition of neurons in the pedunculopontine tegmental nucleus (PPN), which was mediated by gamma (gamma)-amino-butyric acid (GABA). Whole-cell patch-clamp recording was used, in combination with a single-cell reverse transcription-polymerase(More)
The formation of synaptic contacts is a crucial event during neural development and is thought to be achieved by complex interactions between incoming axons and the neurons in the target. We have focused on spine-like dendritic protrusions (SLDPs), which are transient pleomorphic protrusive structures seen in developing brains. Although the functional(More)
Depolarization-activated, Ca2+-independent K+ currents can be largely divided into delayed rectifiers and transient A-type currents. In mammals, each of these subtypes exhibits large variations in voltage dependence and kinetics according to cell types. At the molecular level, the principal subunits of depolarization-activated K+ channels are thought to be(More)