Learn More
Chromomycin (Chro) forms a 2:1 drug/metal complex through the chelation with Fe(II), Co(II), or Cu(II) ion. The effects of spermine on the interaction of Fe(II), Co(II), and Cu(II) complexes of dimeric Chro with DNA were studied. Circular dichroism (CD) measurements revealed that spermine strongly competed for the Fe(II) and Cu(II) cations in dimeric(More)
Chromomycin A3 (Chro) has been evidenced to exhibit much higher binding affinity toward Fe(II) by forming a highly stable 2:1 drug/metal complex, compared to its structural analogue, mithramycin (Mith). Different properties of the [(Chro)2-Fe(II)] complex acting on DNA, such as sequence specificity, DNA cleavage, and topoisomerase I (TopI) inhibition were(More)
Few studies have examined the effects of polyamines on the action of DNA-binding anticancer drugs. Here, a Co(II)-mediated dimeric mithramycin (Mith) complex, (Mith)(2)-Co(II), was shown to be resistant to polyamine competition toward the divalent metal ion when compared to the Fe(II)-mediated drug complexes. Surface plasmon resonance experiments(More)
This paper presents a temperature sensor with process compensation and second-order calibration for Battery Management Systems (BMS). Particularly, the second-order calibrated CTAT and PTAT sensors utilizing a current mirror and an nwell resistor are used to eliminate the second-order term of the temperature coefficient such that the relationship between(More)