Learn More
The effect of mechanical stress on the heart's electrical activity has been termed mechanoelectric feedback. The response to stretch depends upon the magnitude and the waveform of the stimulus, and upon the timing relative to the cardiac cycle. Stretch-activated ion channels (SACs) have been regarded as the most likely candidates for serving as the primary(More)
ETHNOPHARMACOLOGICAL RELEVANCE Allium sativum L. (DaSuan in Mandarin) is a traditional Chinese herb that has been used to prevent and heal cardiovascular diseases. OBJECTIVE To study the effects of allitridi (an active constituent of Allium sativum L.) and amiodarone on the conduction system and on reverse use-dependence in the isolated hearts of normal(More)
Transient stretching of the ventricle can trigger arrhythmias and evoke ventricular fibrillation, especially when the stimulation occurs in the vulnerable period. To explore the sensitivity of small hearts we used a commercial pressure servo to study the kinetic relationship of left ventricular pressure to excitability and arrhythmias in the rat heart.(More)
Stress in the lipids of the cell membrane may be responsible for activating stretch-activated channels (SACs) in nonspecialized sensory cells such as cardiac myocytes, where they are likely to play a role in cardiac mechanoelectric feedback. We examined the influence of the mechanical microenvironment on the gating of stretch-activated potassium channels(More)
Growing evidence indicates that transient receptor potential canonical (TRPC) channels play important roles in various Ca2+-mediated physiological and pathophysiological processes, including development. Many types of TRPC proteins are expressed in the heart. However, limited data are available comparing the expression and localization among TRPC proteins(More)
Cardiac KATP channels link metabolism with electrical activity. They are implicated in arrhythmias, secretion of atrial natriuretic peptide and protection of the heart from hypertrophy and failure. These processes may involve mechanosensitivity. KATP channels can be activated by mechanical stimulation and disrupting the cortical actin increases the(More)
Stretch sensitivity of Ca²(+)-activated large-conductance K(+) channels (BK(Ca)) has been observed in a variety of cell types and considered to be a potential mechanism in mechanoelectric transduction (MET). Mechanical stress is a major stimulator for the smooth muscle in the gastrointestinal (GI) tract. However, much about the role and mechanism of MET in(More)
The present study was designed to observe the properties of swelling-activated chloride channel (ICl.swell) in mouse cardiac myocytes using patch clamp techniques. In whole-cell recordings, hypotonic solution activated a chloride current that exhibited outward rectification, weak voltage-dependent inactivation, and anion selectivity with permeability(More)
  • 1