Learn More
We report a highly specific, robust and rapid new method for labeling cell surface proteins with biophysical probes. The method uses the Escherichia coli enzyme biotin ligase (BirA), which sequence-specifically ligates biotin to a 15-amino-acid acceptor peptide (AP). We report that BirA also accepts a ketone isostere of biotin as a cofactor, ligating this(More)
In this work, we have successfully provided a novel strategy for the rational design and synthesis of a ratiometric fluorescent probe for hypochlorite. The strategy is based on the deoximation reaction, which has not yet been used in the fluorescent hypochlorite probe design. Interestingly, the probe showed a ratiometric fluorescent response to hypochlorite(More)
Fluorescence imaging has emerged as a powerful tool for monitoring biomolecules within the context of living systems with high spatial and temporal resolution. Researchers have constructed a large number of synthetic intensity-based fluorescent probes for bio-imaging. However, intensity-based fluorescent probes have some limitations: variations in probe(More)
Hydrogen peroxide (H(2)O(2)) acts as a signaling molecule in a wide variety of signaling transduction processes and an oxidative stress marker in aging and disease. However, excessive H(2)O(2) production is implicated with various diseases. Nitric oxide (NO) serves as a secondary messenger inducing vascular smooth muscle relaxation. However, mis-regulation(More)
Hypochlorous acid (HOCl), a reactive oxygen species (ROS), plays a significant biological role in living systems. However, abnormal levels of HOCl are implicated in many inflammation-associated diseases. Therefore, the detection of HOCl is of great importance. In this work, we describe the HOCl-promoted cyclization of rhodamine-thiosemicarbazides to(More)
The long wavelength (far-red to NIR) analyte-responsive fluorescent probes are advantageous for in vivo bioimaging because of minimum photo-damage to biological samples, deep tissue penetration, and minimum interference from background auto-fluorescence by biomolecules in the living systems. Thus, great interest in the development of new long wavelength(More)
Caged analogues of biologically active compounds have received widespread attention as temporally and spatially controlled probes of cell-based processes. Recently, a coumarin-4-ylmethyl derivative has been used to cage carboxylates, sulfonates, carbamates, and phosphates. We describe herein a synthetic strategy that furnishes photosensitive caged diols and(More)
Transgene-based inducible expression systems offer the potential to study the influence of any gene at any point during an organism's lifetime. However, the expression of individual genes is both temporally and spatially (i.e., cell/tissue)-regulated. The inducible gene expression systems devised to date do not offer fine spatial control over gene(More)