Learn More
The paper presents a simple technique to assign parameter values to randomly measured points for the least squares fitting of B-spline surfaces. The parameterization is realized by projecting the measured points to a base surface. The parameters of the projected points are then used as the parameters of the measured points. The base surface is in fact a(More)
This article presents a new and direct approach for fitting a subdivision surface from an irregular and dense triangle mesh of arbitrary topological type. All feature edges and feature vertices of the original mesh model are first identified. A topologyand feature-preserving mesh simplification algorithm is developed to further simplify the dense triangle(More)
In this paper, based on the possibility distribution and semantic measure of fuzzy data, an extended object-oriented database model to handle imperfect as well as complex object in the real-world is introduced. Some major notions in object-oriented databases such as objects, classes, object-classes, relationships, subclass/superclass and multiple(More)
This paper presents a new interpolatory subdivision scheme for quadrilateral meshes based on a 1–4 splitting operator. The scheme generates surfaces coincident with those of the Kobbelt interpolatory subdivision scheme for regular meshes. A new group of rules are designed for computing newly inserted vertices around extraordinary vertices. As an extension(More)
Subdivision surfaces refer to a class of modelling schemes that define an object through recursive subdivision starting from an initial control mesh. Similar to B-splines, the final surface is defined by the vertices of the initial control mesh. These surfaces were initially conceived as an extension of splines in modelling objects with a control mesh of(More)
This paper presents a $\sqrt2$ subdivision scheme for quadrilateral meshes that can be regarded as an extension of a 4-8 subdivision with new subdivision rules and improved capability and performance. The proposed scheme adopts a so-called $\sqrt2$ split operator to refine a control mesh such that the face number of the refined mesh generally equals the(More)