Learn More
Fragile X syndrome, the most common form of inherited mental retardation, is caused by hyperexpansion and hypermethylation of a CGG repeat tract in the 5’ untranslated region of the FMR1 gene. This methylation causes the gene to be transcriptionally silenced. In addition to the common allele form with less than 41 repeats, there are two other allelic forms(More)
Chromosome 21 nondisjunction in oocytes is the most common cause of trisomy 21, the primary chromosomal abnormality responsible for Down syndrome (DS). This specific type of error is estimated to account for over 90 % of live births with DS, with maternal age being the best known risk factor for chromosome 21 nondisjunction. The loss of telomere length and(More)
Fragile X-associated disorders are caused by a CGG trinucleotide repeat expansion in the 5'-untranslated region of the FMR1 gene. Expansion of the CGG trinucleotide repeats to >200 copies (that is, a full mutation) induces methylation of the FMR1 gene, with transcriptional silencing being the eventual outcome. Previous data have shown that FMR1 premutation(More)
Women who carry a fragile X premutation, defined as having 55-200 unmethylated CGG repeats in the 5' UTR of the X-linked FMR1 gene, have a 20-fold increased risk for primary ovarian insufficiency (FXPOI). We tested the hypothesis that women with a premutation + FXPOI have shorter telomeres than those without FXPOI because they are "biologically older."(More)
  • 1