Learn More
The objective of this study was to investigate the effects of salt (ST) and waterlogging (WL) stresses and their combination (SW) on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat (Triticum aestivum L.). Two winter wheat cultivars, Huaimai 17 and Yangmai 12, differing in their tolerance to ST and WL stresses were used. The(More)
Hydroponic experiments were conducted to investigate the effects of low nitrogen (N) nutrition on photosynthesis and its relationships with N status in wheat (Triticum aestivum L.). Two wheat cultivars, Zaoyangmai and Yangmai158, differing in low N nutrition tolerances, were used. The results show that under low N nutrition the area of the first top leaf(More)
The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis and enhanced cell membrane peroxidation, as exemplified by(More)
High temperature is a major factor affecting grain yield and plant senescence in wheat growing regions of central and east China. In this study, two different wheat cultivars, Yangmai 9 with low-grain protein concentration and Xuzhou 26 with high-grain protein concentration, were exposed to different temperature regimes in growth chambers during grain(More)
The interaction of multiple waterlogging events during vegetative growth (at the seven- and nine-leaf stage, and at heading) to a waterlogging event during the generative growth stage was studied in wheat (Triticum aestivum L. cv. Yangmai 9). Waterlogging before anthesis was found to effectively enhance tolerance to a waterlogging event after anthesis, as(More)
Accumulation of protein and starch in grain is a key process determining grain yield and quality in wheat. Under drought or waterlogging, endogenous plant hormone levels will change and may have an impact on the yield and quality of wheat. In a greenhouse experiment, four winter wheat (Triticum aestivum L.) varieties differing in grain protein content,(More)
To improve the enzymatic digestibility of sweet sorghum bagasse and bioethanol production, five pretreatment methods have been investigated and compared, including (1) dilute NaOH solution autoclaving pretreatment, (2) high concentration NaOH solution immersing pretreatment, (3) dilute NaOH solution autoclaving and H(2)O(2) immersing pretreatment, (4)(More)
Winter warming is a main consequence of global climate change, which may influence cold acclimation of winter crops hereby reducing their tolerance to low temperature stress in the spring. In this study, winter wheat plants were exposed to winter warming, i.e., increasing air temperature by 2.89 °C for 35 days (from 7th December 2010 to 11th January 2011),(More)