Weixiang Wang

Learn More
Histone lysine methylation has been implicated in epigenetic regulation of transcription. Using stable-isotope labelling and quantitative mass spectrometry, we analysed the dynamics of histone lysine methylation. Here we report that histone methylation levels are transiently reduced during S phase and are gradually re-established during subsequent cell(More)
The tandem Tudor-like domain-containing protein Spindlin1 has been reported to be a meiotic spindle-associated protein. Here we report that Spindlin1 is not associated with the spindle in mouse embryonic fibroblast cells during mitotic divisions. In interphase cells, Spindlin1 specifically localizes to the nucleoli. Moreover, Spindlin1 is a histone(More)
Postimplantation uterine development involves extensive stromal cell proliferation and decidual transformation with polyploidization, which is essential for normal pregnancy establishment. However, it remains largely unknown how stromal proliferation versus decidual polyploidization is differentially regulated during decidualization. Utilizing Wnt6-mutant(More)
MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this(More)
Chorioallantoic branching morphogenesis is a key milestone during placental development, creating the large surface area for nutrient and gas exchange, and is therefore critical for the success of term pregnancy. Several Wnt pathway molecules have been shown to regulate placental development. However, it remains largely unknown how Wnt-Frizzled (Fzd)(More)
H2A.Z is a highly conserved histone variant in all species. The chromatin deposition of H2A.Z is specifically catalyzed by the yeast chromatin remodeling complex SWR1 and its mammalian counterpart SRCAP. However, the mechanism by which H2A.Z is preferentially recognized by non-histone proteins remains elusive. Here we identified Anp32e, a novel higher(More)
Uterine receptivity is defined as a limited time period during which the uterus enters into an appropriately differentiated state that is ready for the initiation of implantation by competent blastocysts. Although various cellular aspects and molecular pathways involved in uterine receptivity have been identified by gene expression studies and genetically(More)
The uterus is an indispensable organ for the development of a new life in eutherian mammals. The female mammalian reproductive capacity diminishes with age. In this respect, the senescence of uterine endometrium is convinced to contribute to this failure. This review focuses on the physiological function of the uterus and the related influence of aging(More)
Recognition of methylated histone tail lysine residues by tudor domains plays important roles in epigenetic control of gene expression and DNA damage response. Previous studies revealed the binding of methyllysine in a cage of aromatic residues, but the molecular mechanism by which the sequence specificity for surrounding histone tail residues is achieved(More)