Learn More
Many studies have suggested that childhood maltreatment increase risk of adulthood major depressive disorder (MDD) and predict its unfavorable treatment outcome, yet the neural underpinnings associated with childhood maltreatment in MDD remain poorly understood. Here, we seek to investigate the whole-brain functional connectivity patterns in MDD patients(More)
Coordinated uterine-embryonic axis formation and decidual remodeling are hallmarks of mammalian post-implantation embryo development. Embryonic-uterine orientation is determined at initial implantation and synchronized with decidual development. However, the molecular mechanisms controlling these events remain elusive despite its discovery a long time ago.(More)
Unpredictable natural disasters and human interventions could pose significant threats to the undersea cables of modern telecommunication networks. In this paper, we consider the network topology of the undersea cables and propose a rectangular network to prevent all the cable links from being damaged simultaneously. An optimization problem on the plane is(More)
PURPOSE The objectives of this research were to assess the biocompatibility of self-assembled Fe(3)O(4) magnetic nanoparticles (MNPs) loaded with daunorubicin (DNR), ie, (Fe(3)O(4)-MNPs/DNR), and to explore their potential application in the treatment of hematologic malignancies. METHODS A hemolysis test was carried out to estimate the hematologic(More)
BACKGROUND Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of(More)
Gambogic acid (GA) has a significant anticancer effect on a wide variety of solid tumors. Recently, many nanoparticles have been introduced as drug-delivery systems to enhance the efficiency of anticancer drug delivery. The aim of this study was to investigate the potential benefit of combination therapy with GA and magnetic nanoparticles of Fe(3)O(4)(More)
BACKGROUND Targeting stem cells holds great potential for studying the embryonic stem cell and development of stem cell-based regenerative medicine. Previous studies demonstrated that nanoparticles can serve as a robust platform for gene delivery, non-invasive cell imaging, and manipulation of stem cell differentiation. However specific targeting of(More)
This study aims to evaluate the multidrug resistance (MDR) reversal activity by magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4) and 5-bromotetrandrine (BrTet) MDR cell line K562/A02 solitarily or symphysially. The proliferation of K562 and K562/A02 cells and the cytotoxicity on peripheral blood mononuclear cells (PMBCs) were evaluated by MTT assay. Cellular(More)
Dynamic voltage scaling technique provides the capability for processors to adjust the speed and control the energy consumption. We study the pessimistic accelerate model where the acceleration rate of the processor speed is at most K and jobs cannot be executed during the speed transition period. The objective is to find a min-energy (optimal) schedule(More)
This paper investigates rate scheduling problems for an energy-harvesting enabled wireless transmitter to optimally transmit a set of dynamically arrived packets to a receiver. We take into account individual packet transmission delay constraints, which is key to guaranteeing per-application quality-of-service (QoS), and consider the discrete-rate(More)