Learn More
Synaptogenesis, the generation and maturation of functional synapses between nerve cells, is an essential step in the development of neuronal networks in the brain. It is thought to be triggered by members of the neuroligin family of postsynaptic cell adhesion proteins, which may form transsynaptic contacts with presynaptic alpha- and beta-neurexins and(More)
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components(More)
In the mammalian CNS, each neuron typically receives thousands of synaptic inputs from diverse classes of neurons. Synaptic transmission to the postsynaptic neuron relies on localized and transmitter-specific differentiation of the plasma membrane with postsynaptic receptor, scaffolding, and adhesion proteins accumulating in precise apposition to(More)
Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of(More)
Yang Zhao,1,4 Xiaolei Yin,1,2,4 Han Qin,1,2,4 Fangfang Zhu,1,2,5 Haisong Liu,1,2,5 Weifeng Yang,1,5 Qiang Zhang,1,2,5 Chengang Xiang,1,2,5 Pingping Hou,1,5 Zhihua Song,1,2 Yanxia Liu,1,2 Jun Yong,1 Pengbo Zhang,1 Jun Cai,1 Meng Liu,1,2 Honggang Li,1 Yanqin Li,1 Xiuxia Qu,1 Kai Cui,1 Weiqi Zhang,1 Tingting Xiang,1 Yetao Wu,1,2 Yiding Zhao,1 Chun Liu,1,2 Chen(More)
CASK is an evolutionarily conserved multidomain protein composed of an N-terminal Ca2+/calmodulin-kinase domain, central PDZ and SH3 domains, and a C-terminal guanylate kinase domain. Many potential activities for CASK have been suggested, including functions in scaffolding the synapse, in organizing ion channels, and in regulating neuronal gene(More)
The development of neuronal networks in the brain requires the differentiation of functional synapses. Neurobeachin (Nbea) was identified as a putative regulator of membrane protein trafficking associated with tubulovesicular endomembranes and postsynaptic plasma membranes. Nbea is essential for evoked transmission at neuromuscular junctions, but its role(More)
The common neurotransmitter serotonin controls different aspects of early neuronal differentiation, although the underlying mechanisms are poorly understood. Here we report that activation of the serotonin 5-HT(7) receptor promotes synaptogenesis and enhances synaptic activity in hippocampal neurons at early postnatal stages. An analysis of Gα(12)-deficient(More)
The introduction of four transcription factors Oct4, Klf4, Sox2 and c-Myc by viral transduction can induce reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), but the use of iPSCs is hindered by the use of viral delivery systems. Chemical-induced reprogramming offers a novel approach to generating iPSCs without any viral vector-based(More)
Neurexins constitute a large family of highly variable cell-surface molecules that may function in synaptic transmission and/or synapse formation. Each of the three known neurexin genes encodes two major neurexin variants, alpha- and beta-neurexins, that are composed of distinct extracellular domains linked to identical intracellular sequences. Deletions of(More)