Learn More
Small heat shock proteins (sHsps) are produced ubiquitously in prokaryotic and eukaryotic cells upon heat. The special importance of sHsps in plants is suggested by unusual abundance and diversity. Six classes of sHsps have been identified in plants based on their intracellular localization and sequence relatedness. In addition to heat stress, plant sHsps(More)
Salt stress is one of the major abiotic stresses in agriculture worldwide. We report here a systematic proteomic approach to investigate the salt stress-responsive proteins in rice (Oryza sativa L. cv. Nipponbare). Three-week-old seedlings were treated with 150 mM NaCl for 24, 48 and 72 h. Total proteins of roots were extracted and separated by(More)
Water status is the main factor affecting rice production. In order to understand rice strategies in response to drought condition in the field, the drought-responsive mechanisms at the physiological and molecular levels were studied in two rice genotypes with contrasting susceptibility to drought stress at reproductive stage. After 20 d of drought(More)
Carissa spinarum is one of the secondary advantage plants grown in dry-hot valleys in China, which can survive under stress conditions of high temperature and extreme low humidity. Here, we studied the physiological and proteomic changes of C. spinarum in response to 42 degrees C heat stress treatment in combination with drought stress. Dynamic changes in(More)
Many environmental stimuli, including light, biotic and abiotic stress factors, induce changes in cellular Ca(2+) concentrations in plants. Such Ca(2+) signatures are perceived by sensor molecules such as calcineurin B-like (CBL) proteins. AtCBL1, a member of the CBL family which is highly inducible by multiple stress signals, is known to function in the(More)
Drought is a major environmental factor that limits the yield of rice dramatically. Upland rice is now regarded as a promising rice cultivar in water saving agriculture. Two varieties of upland rice Zhonghan 3 and IR29 were used to compare the physiological and proteomic responses to hyper-osmotic stress induced by 15% polyethyleneglycol (PEG) at the(More)
The tonoplast intrinsic proteins TIP3;1 and TIP3;2 are specifically expressed during seed maturation and localized to the seed protein storage vacuole membrane. However, the function and physiological roles of TIP3s are still largely unknown. The seed performance of TIP3 knockdown mutants was analysed using the controlled deterioration test. The(More)
Molecular selection, ion exclusion, and water permeation are well known regulatory mechanisms in aquaporin. Water permeability was found to be diverse in different subgroups of plasma membrane intrinsic proteins (PIPs), even though the residues surrounding the water holes remained the same across the subgroups. Upon homology modeling and structural(More)
The highly conserved eukaryotic WD40 repeat protein, Receptor for Activated C Kinase 1 (RACK1), is involved in the abscisic acid (ABA) response in Arabidopsis. However, the regulation of RACK1 and the proteins with which it interacts are poorly understood. Here, we show that RACK1B is sumoylated at four residues, Lys50, Lys276, Lys281 and Lys291.(More)