Weiming Lü

Learn More
Most studies of oxide catalysts for the oxygen reduction reaction (ORR) use oxide powder, where the heterogeneity of exposed surfaces and the composite nature of electrodes limit fundamental understanding of the reaction mechanism. We present the ORR activity of epitaxially oriented La(1-x)Sr(x)MnO3 surfaces and investigate, by varying Sr substitution, the(More)
ETS variant 1 (ETV1) and E3 ubiquitin ligase constitutive photomorphogenetic 1 (COP1) have been proposed to be a pair of oncogene and tumor suppressor. However, the co-existing status of ETV1 and COP1 in triple-negative breast cancer (TNBC) and their predictive role in determining the patient’s outcome are uncertain. We examined the abundance of COP1 and(More)
We report optical, electrical and magnetotransport properties of oxygen deficient SrTiO(3) (SrTiO(3-x)) thin films fabricated by pulsed laser deposition technique. The oxygen vacancies (O(vac)) in the thin film are expected to be uniform. By comparing its electrical properties to those of bulk SrTiO(3-x), it was found that O(vac) in bulk SrTiO(3-x) is far(More)
The ability to change states using voltage in ferroelectric tunnel junctions (FTJs) offers a route for lowering the switching energy of memories. Enhanced tunneling electroresistance in FTJ can be achieved by asymmetric electrodes or introducing metal-insulator transition interlayers. However, a fundamental understanding of the role of each interface in a(More)
The observation of a high-mobility two-dimensional electron gas between two insulating complex oxides, especially LaAlO₃/SrTiO₃, has enhanced the potential of oxides for electronics. The occurrence of this conductivity is believed to be driven by polarization discontinuity, leading to an electronic reconstruction. In this scenario, the crystal orientation(More)
Since the discovery of two-dimensional electron gas (2DEG) at the oxide interface of LaAlO3/SrTiO3 (LAO/STO), improving carrier mobility has become an important issue for device applications. In this paper, by using an alternate polar perovskite insulator (La0.3Sr0.7) (Al0.65Ta0.35)O3 (LSAT) for reducing lattice mismatch from 3.0% to 1.0%, the(More)
The 2D electron gas at the polar/non-polar oxide interface has become an important platform for several novel oxide electronic devices. In this paper, the transport properties of a wide range of polar perovskite oxide ABO3/SrTiO3 (STO) interfaces, where ABO3 includes LaAlO3, PrAlO3, NdAlO3, NdGaO3 and LaGaO3 in both crystalline and amorphous forms, were(More)
Magnetic interactions in solids are normally mediated by short-range exchange or weak dipole fields. Here we report a magnetic interaction that can propagate over long distances (∼10 nm) across a polar insulating oxide spacer. Evidence includes oscillations of magnetization, coercivity and field-cooled loop shift with the thickness of LaAlO3 in(More)
greater than the bulk value, depending on the deposition temperature. There is no signifi cant change in density and cationic ratio of the oxide so the effect is attributed to Sr/Ti antisite defects, an attribution supported by density functional theory calculations. It was found that the bandgap enhancement signifi cantly changes the electronic and(More)