Learn More
A novel dermal substitute of combining recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) with a porous heparinized collagen/chitosan scaffolds was developed, considering the inadequate angiogenesis during repair of full-thickness skin defects. The physicochemical properties of heparinized collagen/chitosan scaffolds were examined(More)
The process of wound healing involves a complex interplay of cells, mediators, growth factors and cytokines. GM-CSF has been shown to be involved in a number of processes essential in this event. Topically applied rhGM-CSF has been reported to successfully treat wounds with diverse etiology, including burns, chronic venous leg ulcers, pressure ulcers, and(More)
Re-epithelialization is the first and most important step in cutaneous wound healing. The vital role of epidermal cells, or keratinocytes, in accelerating wound healing has long been established. The technique of delivering the cultured and uncultured epidermal cells to the wound bed takes a variety of forms including cultured epithelial autografts (CEAs),(More)
The effects of thermal and solvent vapor annealing on the photovoltaic performance of a new class of all-conjugated poly(3-butylthiophene)-b-poly(3-hexylthiophene) diblock copolymer/PC(71)BM bulk heterojunction (BHJ) solar cells were scrutinized and theoretically analyzed using the single diode model combined with experimental measurements. The meanings of(More)
In this work, the resistance plasticity of Cu/SiO2/W programmable metallization cell devices is experimentally explored for the emulation of biological synapses. PMC devices were fabricated with foundry friendly materials using standard processes. The resistance can be continuously increased or decreased with both dc and voltage pulse programming. Impedance(More)
This is a work aimed to investigate the biodegradability, biocompatibility and mechanical property of the poly-lactide-co-glycolic acid (PLGA) knitted mesh preliminarily and to further explore its applications in tissue engineering and regenerative medicine. The biological property of PLGA mesh was investigated comprehensively with the degradation(More)
  • 1