Weijian Zhuang

Learn More
Cultivated peanut possesses an extremely narrow genetic basis. Polymorphism is considerably difficult to identify with the use of conventional biochemical and molecular tools. For the purpose of obtaining considerable DNA polymorphisms and fingerprinting cultivated peanut genotypes in a convenient manner, start codon targeted polymorphism technique was used(More)
Peanut (Arachis hypogaea L.) is an important source crop for edible oil and protein. It is important to identify the genetic diversity of peanut genetic resources for cultivar development and evaluation of peanut accessions. Thirty-four SSR markers were used to assess the genetic variation of four sets of twenty-four accessions each from the four botanical(More)
Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious, global, disease of peanut (Arachis hypogaea L.), but it is especially destructive in China. Identification of DNA markers linked to the resistance to this disease will help peanut breeders efficiently develop resistant cultivars through molecular breeding. A F2 population, from a cross(More)
Contamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A. flavus in aflatoxin conducive and non-conducive media with varying levels(More)
Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots which will cause significant yield loss. The most sustainable, economical and eco-friendly solution for managing peanut diseases is development of improved cultivars with high level of resistance. We developed a recombinant inbred line population from the(More)
Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo(More)
A novel method is introduced for producing molecular markers in plants using single 15- to 18-mer PCR primers designed from the short conserved consensus branch point signal sequences and standard agarose gel electrophoresis. This method was tested on cultivated peanut and verified to give good fingerprinting results in other plant species (mango, banana,(More)
Cultivated peanut is grown worldwide as rich-source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and population structure of peanut cultivars and breeding lines from different breeding(More)
A novel root-specific gene and its upstream promoter were cloned and characterized for potential application in root-specific expression of transgenes. The root is an important plant organ subjected to many biotic and abiotic stresses, such as infection by Ralstonia solanacearum. To isolate tobacco root-specific promoters for genetic applications,(More)
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible(More)
  • 1