Weijian Zhang

Learn More
Icaritin (ICT) is a hydrolytic form of icariin isolated from plants of the genus Epimedium. This study was to investigate the radiosensitization effect of icaritin and its possible underlying mechanism using murine 4T1 breast cancer cells. The combination of Icaritin at 3 µM or 6 µM with 6 or 8 Gy of ionizing radiation (IR) in the clonogenic assay yielded(More)
Dynamic metabolomics studies can provide a systematic view of the metabolic trajectory during disease development and drug treatment and reveal the nature of biological processes at metabolic level. To extract important information in a systematic time dimension rather than at isolated time points, a weighted method based on the means and variations along(More)
Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O(More)
The stability of soil organic carbon (SOC) is of great importance in controlling long-term carbon (C) sequestration and feedbacks of soil C pools to climate change. It has been well documented that rice cropping and organic amendments could enhance SOC stocks, while the stability of the sequestered C has not been well understood yet. The objective of this(More)
Temperature and moisture effects on organic carbon (C) decomposition (i.e., CO2 and CH4 emissions) determine the feedback of soil organic carbon (SOC) stocks in rice (Oryza sativa L.) paddies to climate change. In the present study, soils from a long-term (initiated in 1981) fertilization experiment [unfertilized control, combined inorganic nitrogen,(More)
Developing large rice (Oryza sativa L.) panicles has been widely regarded as an effective approach to increasing rice yield. However, it is unclear whether panicle size affects CH4 emissions from rice fields, especially during the reproductive stage. Here, we conducted two experiments (rice variety and mutant) to examine the effects of rice panicle size on(More)
Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by(More)