Learn More
UNLABELLED During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The(More)
The type III secretion system (T3SS) of Pseudomonas aeruginosa is an important virulence factor. The T3SS of P. aeruginosa can be induced by a low calcium signal or upon direct contact with the host cells. The exact pathway of signal sensing and T3SS activation is not clear. By screening a transposon insertion mutant library of the PAK strain, mutation in(More)
RATIONALE New vaccine approaches are needed for Pseudomonas aeruginosa, which continues to be a major cause of serious pulmonary infections. Although Th17 cells can protect against gram-negative pathogens at mucosal surfaces, including the lung, the bacterial proteins recognized by Th17 cells are largely unknown and could be potential new vaccine(More)
Mucosal epithelial cells in the respiratory tract act as the first line of host innate defense against inhaled microbes by producing a range of molecules for clearance. In particular, epithelial mucins facilitate the mucociliary clearance by physically trapping the inhaled microbes. Up-regulation of mucin production thus represents an important host innate(More)
The scaffold protein CARD9 plays an essential role in anti-fungus immunity and is implicated in mediating Dectin-1/Syk-induced NF-kappaB activation in response to Candida albicans infection. However, the molecular mechanism by which CARD9 mediates C. albicans-induced NF-kappaB activation is not fully characterized. Here we demonstrate that CARD9 is involved(More)
In a search for regulatory genes of the type III secretion system (TTSS) in Pseudomonas aeruginosa, transposon (Tn5) insertional mutants of the prtR gene were found defective in the TTSS. PrtR is an inhibitor of prtN, which encodes a transcriptional activator for pyocin synthesis genes. In P. aeruginosa, pyocin synthesis is activated when PrtR is degraded(More)
Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example.(More)
Transcription Activator-Like Effector Nucleases (TALENs) are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and(More)
In response to invading microorganisms, macrophages engage in phagocytosis and rapidly release reactive oxygen species (ROS), which serve an important microbicidal function. However, how phagocytosis induces ROS production remains largely unknown. CARD9, a caspase-recruitment domain (CARD)-containing protein, is important for resistance to fungal and(More)
This study compared the pathology and infection pattern of streptococcal pyrogenic exotoxin B-positive (SpeB(+)) and SpeB-negative (SpeB(-)) isogenic variants of an M1 isolate of Streptococcus pyogenes in a mouse skin air sac model. SpeB(+) strains resulted in severe local tissue damage that extended from the epidermis through the subcutaneous layers,(More)