Weihua Xiong

Learn More
Although depth information plays an important role in the human vision system, it is not yet well-explored in existing visual saliency computational models. In this work, we first introduce a large scale RGBD image dataset to address the problem of data deficiency in current research of RGBD salient object detection. To make sure that most existing RGB(More)
The technique of support vector regression is applied to the problem of estimating the chromaticity of the light illuminating a scene from a color histogram of an image of the scene. Illumination estimation is fundamental to white balancing digital color images and to understanding human color constancy. Under controlled experimental conditions, the support(More)
Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the(More)
In image understanding, the automatic recognition of emotion in an image is becoming important from an applicative viewpoint. Considering the fact that the emotion evoked by an image is not only from its global appearance but also interplays among local regions, we propose a novel context-aware classification model based on bilayer sparse representation(More)
Salient object detection provides an alternative solution to various image semantic understanding tasks such as object recognition, adaptive compression and image retrieval. Recently, low-rank matrix recovery (LR) theory has been introduced into saliency detection, and achieves impressed results. However, the existing LR-based models neglect the underlying(More)
Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide better illumination estimates by fusing the information(More)
Color constancy is an important perceptual ability of humans to recover the color of objects invariant of light information. It is also necessary for a robust machine vision system. Until now, a number of color constancy algorithms have been proposed in the literature. In particular, the edge-based color constancy uses the edge of an image to estimate light(More)
A multi-cue illumination estimation method based on tree-structured group joint sparse representation is proposed. Tests show that the proposed method works better than existing methods, most of which are based on using only a single cue type, for example, a binarized color histogram or simple image statistic such as the mean RGB. Most existing illumination(More)
The Retinex algorithm for lightness and color constancy is extended here to include 3-dimensional spatial information reconstructed from a stereo image. Tests show this modification improves retinex. A key aspect of traditional Retinex is that, within each color channel, it makes local spatial comparisons of intensity. In particular, intensities ratios are(More)
Computational color constancy is a very important topic in computer vision and has attracted many researchers' attention. Recently, lots of research has shown the effects of using high level visual content cues for improving illumination estimation. However, nearly all the existing methods are essentially combinational strategies in which image's content(More)