Learn More
Although depth information plays an important role in the human vision system, it is not yet well-explored in existing visual saliency computational models. In this work, we first introduce a large scale RGBD image dataset to address the problem of data deficiency in current research of RGBD salient object detection. To make sure that most existing RGB(More)
The technique of support vector regression is applied to the problem of estimating the chromaticity of the light illuminating a scene from a color histogram of an image of the scene. Illumination estimation is fundamental to white balancing digital color images and to understanding human color constancy. Under controlled experimental conditions, the support(More)
In image understanding, the automatic recognition of emotion in an image is becoming important from an applicative viewpoint. Considering the fact that the emotion evoked by an image is not only from its global appearance but also interplays among local regions, we propose a novel context-aware classification model based on bilayer sparse representation(More)
The Retinex algorithm for lightness and color constancy is extended here to include 3-dimensional spatial information reconstructed from a stereo image. Tests show this modification improves retinex. A key aspect of traditional Retinex is that, within each color channel, it makes local spatial comparisons of intensity. In particular, intensities ratios are(More)
Comparing with the research of pornographic content filtering on Web, Web horror content filtering, especially horror video scene recognition is still on the stage of exploration. Most existing methods identify horror scene only from independent frames, ignoring the context cues among frames in a video scene. In this paper, we propose a Multi-view(More)
Salient object detection provides an alternative solution to various image semantic understanding tasks such as object recognition, adaptive compression and image retrieval. Recently, low-rank matrix recovery (LR) theory has been introduced into saliency detection, and achieves impressed results. However, the existing LR-based models neglect the underlying(More)
Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide better illumination estimates by fusing the information(More)
Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to(More)
Principal Component Analysis (PCA), Independent Component Analysis (ICA), Non-Negative Matrix Factorization (NNMF) and Non-Negative Independent Component Analysis (NNICA) are all techniques that can be used to compute basis vectors for finite-dimensional models of spectra. The two non-negative techniques turn out to be especially interesting because the(More)
Color constancy is an important perceptual ability of humans to recover the color of objects invariant of light information. It is also necessary for a robust machine vision system. Until now, a number of color constancy algorithms have been proposed in the literature. In particular, the edge-based color constancy uses the edge of an image to estimate light(More)