Learn More
BACKGROUND Cyanobacteria can utilize solar energy and convert carbon dioxide into biofuel molecules in one single biological system. Synechocystis sp. PCC 6803 is a model cyanobacterium for basic and applied research. Alkanes are the major constituents of gasoline, diesel and jet fuels. A two-step alkane biosynthetic pathway was identified in cyanobacteria(More)
BACKGROUND Spindles are formed from microtubules and are exquisitely sensitive to changes in temperature. An orientation-independent polarized light microscope, the Polscope, can be used to image spindles in living oocytes allowing analysis of spindle kinetics in the living state. This study examined the effects of cooling on spindle disassembly in living(More)
BACKGROUND Birefringent spindles imaged with the Polscope can predict fertilization rates after intracytoplasmic sperm injection (ICSI). The present study examined the development of human oocytes with or without birefringent spindles, imaged with the Polscope before ICSI. METHODS Oocytes were obtained from stimulated ovaries of consenting patients(More)
The IPL1 gene is required for high-fidelity chromosome segregation in the budding yeast Saccharomyces cerevisiae. Conditional ipl1ts mutants missegregate chromosomes severely at 37 degrees C. Here, we report that IPL1 encodes an essential putative protein kinase whose function is required during the later part of each cell cycle. At 26 degrees C, the(More)
OBJECTIVE To image spindles in living human oocytes and to examine the relation between spindles and fertilization after ICSI. DESIGN The LC polscope was used to examine spindles in an observational study of living oocytes. SETTING Academic IVF clinic. PATIENT(S) Women being treated for infertility. INTERVENTION(S) Oocytes retrieved from patients(More)
We used the patch-clamp technique to study the effect of extracellular Ca2+ (Ca2+o) on the activity of the apical 70-pS K+ channel in the isolated split-open thick ascending limb (TAL) of the rat kidney. Raising Ca2+o from 1.1 to 5 mM reversibly reduced the activity of the 70-pS K+ channel in cell-attached patches to 16 +/- 2% of the control value within(More)
We used the patch-clamp technique to study the activity and regulation of single potassium channels in the apical membrane of isolated cortical collecting tubules (CCT) of rat kidney. With 140 mM K+ in the pipette the inward conductance of the channel in cell-attached patches at 37 degrees C was 35 pS (n = 106, NaCl-Ringer or 70 mM KCl and 70 mM NaCl in the(More)
A small-conductance K+ channel in the apical membrane of rat cortical collecting duct (CCD) cells controls K+ secretion in the kidney. Previously, we observed that the activity of the channel is stimulated by cAMP-dependent protein kinase A (PKA)-induced channel phosphorylation. We now have applied the patch-clamp technique to study the effects of protein(More)
This study was conducted to examine expression of centromere protein B (CENPB), spindle checkpoint protein MAD2 (mitotic arrest deficient protein), and antiapoptotic protein BCL2; activities of MAPK (mitogen-activated protein kinase) and mitochondria distribution in pig oocytes during aging, and their relationship with sister chromatid separation during(More)
We have used Western blot to examine the expression of cSrc protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP)-1D in the renal cortex, and the patch-clamp technique to determine the role of PTK in mediating the effect of dietary K intake on the small-conductance K (SK) channel in the cortical collecting duct (CCD). When rats were on a(More)