Learn More
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum.(More)
Beauveria bassiana is an insect pathogenic fungus widely used as a biocontrol agent to infect and control insect pests. The conidium initiates pathogenesis and mediates disease transmission, however, little is known about genetic elements that control conidiation. Here, the cloning and characterization of a regulatory G protein-signalling (RGS) gene Bbrgs1(More)
Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a(More)
Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. However, its insecticide efficacy in the field is often influenced by adverse environmental factors. Thus, understanding the genetic regulatory processes involved in the response to environmental stress(More)
Entomopathogenic fungi are currently being used for the control of several insect pests as alternatives or supplements to chemical insecticides. Improvements in virulence and speed of kill can be achieved by understanding the mechanisms of fungal pathogenesis and genetically modifying targeted genes, thus improving the commercial efficacy of these(More)
Beauveria bassiana has been investigated for use in the biological control of several insects in agricultural practice. To understand the molecular basis of virulence and host specificity and to improve the entomopathogenicity of B. bassiana, we have developed a simple, highly efficient and reliable Agrobacterium-mediated transformation method for B.(More)
Metarhizium anisopliae is a model system for studying insect fungal pathogenesis. The role of cAMP signal transduction in virulence was studied by disrupting the class I PKA catalytic subunit gene (MaPKA1). The PKA mutant (DeltaMaPKA1) showed reduced growth and greatly reduced virulence. PKA was dispensable for differentiation of infection structures(More)
The low survival of microbial pest control agents exposed to UV is the major environmental factor limiting their effectiveness. Using gene disruption we demonstrated that the insect pathogenic fungus Metarhizium robertsii uses photolyases to remove UV-induced cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) photoproducts [(6-4)PPs] from its DNA.(More)
Regulators of the G protein signalling (RGS) pathway have been implicated in the control of a diverse array of cellular functions, including conidiation in filamentous fungi. However, the regulatory processes involved in conidiation in insect-pathogenic fungi are poorly understood. Since conidia are the infective propagules in these fungi, an understanding(More)
Characterization of genes involved in germination, conidiogenesis and insect pathogenesis is an important step in identifying methods to increase the efficacy of Metarhizium anisopliae, a commercially important entomopathogenic fungus. Real-time RT-PCR is a sensitive, reproducible and quantitative method to study gene expression. However, it requires(More)